
Interaction with Formal
Mathematical Documents

in Isabelle/PIDE

Makarius Wenzel, Augsburg
https://sketis.net

July 2019

λ
→

∀
=Is

ab
el
le

β

α

PIDE

https://sketis.net

Summary

Isabelle/PIDE

• long-term effort to support live editing of complex document
structures with “active” content

• most ambitious application: interactive theorem proving

• less demanding applications are easy, e.g. Isabelle/Naproche

Greater context:

• LCF/ML approach to interactive theorem proving (by Milner et-al)

• Isar approach to human-readable proof documents (by Wenzel)

• parallel ML and future proofs (by Matthews and Wenzel)

• early prover interfaces (by Aspinall, Bertot et-al)

−→ forming a limit over decades of implementation-oriented research

1

Introduction

Isabelle

Logic:

Isabelle/Pure: Logical framework and bootstrap environment

Isabelle/HOL: Theories and tools for applications

Programming:

Isabelle/ML: Tool implementation (Poly/ML)

Isabelle/Scala: System integration (JVM)

Proof:

Isabelle/Isar: Intelligible semi-automated reasoning

Document language: LATEX type-setting of proof text

Introduction 3

Example: Mathematical Documents

Cantor’s Theorem states that there is no surjection from a set to its powerset.

The proof works by diagonalization. E.g. see

• MathWorld: http://mathworld.wolfram.com/CantorDiagonalMethod.html

• Wikipedia: https://en.wikipedia.org/wiki/Cantor’s diagonal argument

• Formal proof in Isabelle/Isar:

theorem Cantor : @ f :: ′a ⇒ ′a ⇒ bool . ∀A. ∃ x . A = f x

proof
assume ∃ f :: ′a ⇒ ′a ⇒ bool . ∀A. ∃ x . A = f x
then obtain f :: ′a ⇒ ′a ⇒ bool where ∗: ∀A. ∃ x . A = f x ..
let ?D = λx . ¬ f x x

from ∗ have ∃ x . ?D = f x ..
then obtain a where ?D = f a ..
then have ?D a ←→ f a a by (rule arg cong)
then have ¬ f a a ←→ f a a .
then show False by (rule iff contradiction)

qed

Introduction 4

http://mathworld.wolfram.com/CantorDiagonalMethod.html
https://en.wikipedia.org/wiki/Cantor's_diagonal_argument

Interaction in PIDE

History:

• initial sketch at Dagstuhl, October 2009:
“On prover interaction and integration with Isabelle/Scala”
https://files.sketis.net/Dagstuhl2009.pdf

• recent overview at Dagstuhl, August 2018:
“The Isabelle Prover IDE after 10 years of development”
https://files.sketis.net/Dagstuhl2018.pdf

• cumulative complexity in concepts and implementation

Architecture:

• inside the prover: Isabelle/ML back-end

• outside the prover: Isabelle/Scala front-end

• interaction via document edits vs. markup reports

Introduction 5

https://files.sketis.net/Dagstuhl2009.pdf
https://files.sketis.net/Dagstuhl2018.pdf

Notable applications

• Isabelle/jEdit Prover IDE (back-end: Isabelle theory processing)
e.g. $ISABELLE_HOME/src/HOL/Isar_Examples/Drinker.thy
e.g. $ISABELLE_HOME/src/Doc/JEdit/JEdit.thy

• Isabelle/jEdit ML IDE (back-end: Isabelle/ML run-time compiler)
e.g. $ISABELLE_HOME/src/Pure/ROOT.ML

• Isabelle/jEdit BibTEX IDE (back-end: bibtex)
e.g. $ISABELLE_HOME/src/Doc/manual.bib

• Isabelle/Naproche (back-end: Naproche-SAD server in Haskell)
“Automatic Proof-Checking of Ordinary Mathematical Texts”
(by Frerix and Koepke)

Introduction 6

Screenshot: Isabelle/jEdit Prover IDE

Introduction 7

Screenshot: Isabelle/jEdit ML IDE

Introduction 8

Screenshot: Isabelle/jEdit BibTEX IDE

Introduction 9

The PIDE Document Model

The PIDE Document Model

Main ideas:

• large expression of embedded sub-languages

• interactive exploration in the editor

• parallel processing by the prover

• prover/editor communication via asynchronous document edits

• document perspective determines focus of execution

Document content:

• theory sources: plain text

• auxiliary files: arbitrary blobs (usually plain text)

• output with semantic markup (untyped XML)

• output formatted as Oppen-style pretty trees

The PIDE Document Model 11

Document structure and organization

Theories:

• definition: e.g. definition, inductive, primrec

• statement: e.g. lemma, function, termination

• proof: Isar proof text (not “proof script”)

• document outline: e.g. chapter, section, text

Note:

• proper foundational order of all entities
(mutual recursion limited to single definition)

• implicit monotonic reasoning for derived elements

Sessions:

• acyclic sub-graph of imported theories (and other sessions)

• optional LATEX document (generated by Isabelle)

The PIDE Document Model 12

Session exports

Main ideas:

• output of arbitrary blobs (analogous to auxiliary files)

• hierarchical name space (for each theory)

• virtual file-system isabelle-export: in Isabelle/jEdit

• stored within session database

• retrieved via isabelle export or isabelle build -e

Examples: generated sources

• export code e.g. ~~/src/HOL/Quotient_Examples/Lift_Set.thy

• export generated files, e.g. ~~/src/Tools/Haskell/Haskell.thy
command-line: isabelle export -l Haskell

The PIDE Document Model 13

Common syntax for embedded languages

Outer theory syntax:

• keywords: user-defined commands (e.g. definition, inductive)

• identifiers, numerals etc.

• quoted strings "source": nesting requires backslash-escapes

• cartouches 〈source〉: arbitrary nesting without no escapes

Example:
ML 〈val t = term 〈λx . x ≤ y + z — comment in term〉 — comment in ML〉

The PIDE Document Model 14

Aims and Approaches of
Isabelle/PIDE

Isabelle/ML vs. Isabelle/Scala (1)

• Isabelle/ML (based on Poly/ML): “pure mathematics”

• Isabelle/Scala (based on Java 11 platform): “real physics”

Success:

• clean and efficient (parallel) functional programming on both sides

• minimality / purity of the library, overlap of modules on both sides

• manual migration / translation of modules on demand

Failure:

• Isabelle/ML perceived as difficult for many users

• Isabelle/Scala perceived as inaccessible for most users

Aims and Approaches of Isabelle/PIDE 16

Isabelle/ML vs. Isabelle/Scala (2)

Changes:

• Isabelle/Scala has grown in importance over the year:
integral part of Isabelle, not just add-on

• Isabelle/Scala code base has similar size as Isabelle/ML/Pure

Future:

• proper IDE support for Isabelle/Scala
(e.g. IntelliJ instead of Isabelle/Scala/PIDE itself)

Aims and Approaches of Isabelle/PIDE 17

Private protocol vs. public API (1)

• PIDE protocol: untyped messages between prover and editor
(blobs, XML/YXML)

• PIDE APIs: typed interfaces in ML and Scala
(e.g. messages with logical markup and Oppen-style pretty trees)

Success:

• efficient and robust implementation of bi-lingual PIDE

• easy maintenance of corresponding modules in same directory

Failure:

• alternative PIDE prover implementation difficult to maintain
(e.g. PIDE/Coq remains unfinished)

Aims and Approaches of Isabelle/PIDE 18

Private protocol vs. public API (2)

Changes:

• PIDE protocol started plain and simple, but has become complex
(e.g. for scaling, add-on features)

Future:

• re-open old idea to retarget PIDE, e.g. for Coq (??)

• addition display protocol for PIDE front-end, e.g. for web interface

Aims and Approaches of Isabelle/PIDE 19

Pervasive parallelism on multicore hardware (1)

• routine support for shared-memory multiprocessing in Isabelle/ML
(and Isabelle/Scala)

• low-level POSIX threads/locks or high-level future values

Success:

• parallel Isabelle/ML works well since 2008, with increasing stability
and scalability; 8–16 cores for parallel theory and proof checking

Failure:

• stagnation of the multicore market: light-weight mobile devices
(2–8 cores) vs. high-end servers (32–128 cores)

• high-end machines are often clusters of low-end CPUs,
e.g. 64 hardware threads = 8 cores × 8 nodes (NUMA)

Aims and Approaches of Isabelle/PIDE 20

Pervasive parallelism on multicore hardware (2)

Future:

• maybe follow the trend towards “cloud computing”,
e.g. local Isabelle/jEdit or Isabelle/VSCode editor
(not web browser interface)

• further refinement of Headless PIDE server

Aims and Approaches of Isabelle/PIDE 21

Multi-platform desktop application bundles (1)

• support for mainstream platforms: Linux, Windows, macOS

• no self-assembly by users

• no re-packaging by OS developers (e.g. Debian)

• no support for exotic platforms (e.g. BSD, Solaris, NixOS)

Success:

• all-inclusive Isabelle (1 GB unpacked) just works for most users

• “download–unpack–run” comparable to e.g. Firefox, LibreOffice

Failure:

• OS non-uniformity: varying GUI quality and external tool stability

• OS malware protection hinders external tools

• OS vendors tend to reject non-registered applications

Aims and Approaches of Isabelle/PIDE 22

Multi-platform desktop application bundles (2)

Changes:

• early deployment was too optimistic about fragile dependencies
(e.g. Java, Scala)

• almost everything is now bundled (similar to SageMath)

• few implicit dependencies: e.g. libc, libc++, curl, perl

Future:

• better integration of the Archive of Formal Proofs (AFP)

• better support for derived application bundles,
e.g. Isabelle/MMT, Isabelle/Naproche

Aims and Approaches of Isabelle/PIDE 23

Application: Isabelle/Naproche

Automatic Proof-Checking of Ordinary
Mathematical Texts

Naproche-SAD: 2017/2018

• Steffen Frerix and Peter Koepke (Bonn): reworked and extended
version of SAD by Andrei Paskevich (LRI, Paris Sud)

• ForTheL (Formal Theory Language):
restricted subset of mathematical jargon

• based on First-Order Logic and Classic Set-Theory

• automated reasoning via E Prover (Stephan Schulz)

• Haskell implementation: command-line tool,
sequential function from input files to informal output messages

Application: Isabelle/Naproche 25

Isabelle/Naproche: 2018

• Haskell implementation: TCP server with cached blocks of text,
reactive function from input text to formal output messages

• based on general Isabelle/Haskell library for Isabelle/PIDE
(new in Isabelle2019)

• Isabelle/Scala add-on to register .ftl as auxiliary file format with
implicit theory context (new in Isabelle2019)

• derived application bundling and branding as Isabelle/Naproche

Corollary:

• Isabelle applications are not necessarily tied to Isabelle/HOL
(nor Isabelle/Pure)

• further PIDE applications in Haskell will be easy to implement

Application: Isabelle/Naproche 26

Screenshot: Isabelle/Naproche

Application: Isabelle/Naproche 27

Conclusion

Future work (after 11 years of PIDE)

PIDE technology:

• dynamic session management

• dynamic PDF-LATEX document preparation

• real-time HTML/CSS preview, approaching LATEX quality

PIDE sociology:

• better visibility outside of Isabelle community

• more re-use of the Isabelle/PIDE platform

Conclusion 29

