
Isabelle technology for
the Archive of Formal Proofs

with application to MMT

Makarius Wenzel, Augsburg
https://sketis.net

July 2019

λ
→

∀
=Is

ab
el
le

β

α

AFP

https://sketis.net


Motivation: scalability for
Isabelle/AFP



The Archive of Formal Proofs

AFP: https://www.isa-afp.org

• repository of formalized mathematics: checked by Isabelle

• scientific journal: reviewed by 5 human editors

Maintenance model:

• everything should always work (most of the time)

• Isabelle changes are pushed through to AFP applications

• demand for fast feedback from build jobs

Motivation: scalability for Isabelle/AFP 2

https://www.isa-afp.org


AFP articles: text size vs. date of first appearance

Motivation: scalability for Isabelle/AFP 3



Practical time scales

Online time: max. 45min (“Paris commuter’s constant”)

Offline time: max. 2h (“French lunch break”)

AFP timing: 8 processes × 8 threads, excluding very_slow

• Isabelle with main only:
7.5min elapsed time, 53min CPU time (factor 7.0)

• AFP without slow / large:
51min elapsed time, 25h47 CPU time (factor 30.3)

• AFP with slow / large only:
50min elapsed time, 12h04 CPU time (factor 14.5)

• Isabelle + AFP:
1h14 elapsed time, 42h11 CPU time (factor 34.2)

Motivation: scalability for Isabelle/AFP 4



Isabelle technology



What is Isabelle?

Originally: by Larry Paulson (1986/1989)

• logical framework (LF)

• generic proof assistant, e.g. for CTT, FOL, ZF, HOL

After 30 years of evolution:

• software technology for large libraries of formal mathematics

• many sub-systems with “Isabelle/XYZ” naming scheme, e.g.

Isabelle/HOL: application logic with theories and tools
Isabelle/ML: internal tool implementation language
Isabelle/Scala: external system integration language
Isabelle/PIDE: Prover IDE framework for semantic interaction

Isabelle technology 6



Isabelle/HOL

• old-fashioned logic (Church 1940, Gordon 1985)

• highly successful in applications

• classic set-theory with simple types

• many derived mechanisms for specifications and proofs

Note:

• Isabelle/HOL is classic mathematics, not programming
(but: tutorial “Programming and proving in Isabelle/HOL”)

• Isabelle/HOL extensions usually implemented in Isabelle/ML
(“LCF approach”)

Isabelle technology 7



Isabelle/ML

• based on Poly/ML: David Matthews (1985)

• rich Isabelle/ML library

• high-end IDE, e.g. for Isabelle itself via ~~/src/Pure/ROOT.ML

• source-level debugger

Main technology: scalable parallel functional programming

• fast run-time compilation to produce fast machine-code

• shared-memory parallelism (threads/locks or futures)

• stop-the-world garbage collection with internal parallelism

• implicit substructure-sharing of pure values (strings, terms, etc.)

• dumped-world images for fast reloading of semantic state

• compact representation of data on 64 bit hardware:
32 bit addressing of max. 16 GB heap space

Isabelle technology 8



Isabelle/Scala (1)

• based on regular Scala, hosted on Java platform (version 11)

• functional programming style similar to Isabelle/ML

• overlapping parts of libraries with Isabelle/ML

Main technology:

• multi-threaded JVM with parallel garbage collection

• efficient functional programming on the JVM

• access to external databases (notably SQLite, PostgreSQL)

• access to TCP services (notably SSH, HTTP)

• support for Mercurial (the standard SCM for Isabelle + AFP)

Isabelle technology 9



Isabelle/Scala (2)

Benefits:

• proper functional programming (with types)

• proper data structures (e.g. acyclic graph for dependencies)

• avoid system “scripts” (e.g. bash, perl, python, ruby)

Isabelle sources:

• Isabelle/Scala: 1.6 MB

• Isabelle/ML/Pure: 2.4 MB

Isabelle/Scala applications:

• Isabelle/jEdit: GUI application (AWT/Swing)

• Isabelle/VSCode: Language Server Protocol server (JSON)

• Isabelle command-line tools (see isabelle)

Isabelle technology 10



Isabelle/PIDE

• Prover IDE framework, implemented in Scala and ML

• prover as formal document processor (input: edits, output: reports)

• Headless PIDE as interactive object under program control, e.g.

– export of formal content with access to the internal ML context
– update of theory sources based on PIDE markup
– detailed recording of timing information

Applications:

• Isabelle/jEdit: PIDE user-interaction via text editor

• Isabelle/MMT: PIDE document export (OMDoc and RDF/XML)

Isabelle technology 11



Application: Isabelle/MMT —
OMDoc and RDF/XML from AFP



MMT

MMT: https://uniformal.github.io

• “Meta Meta-Theory” by Michael Kohlhase, Florian Rabe et-al

• OMDoc file-format (based on XML)

• documents with formal, informal, semi-formal content

• MMT sub-projects: importers for various languages

• mmt.jar: Scala library with MMT services

Application: Isabelle/MMT — OMDoc and RDF/XML from AFP 13

https://uniformal.github.io


Isabelle/MMT

Isabelle/MMT: https://isabelle.sketis.net/Isabelle MMT CICM2019

• Isabelle component that incorporates mmt.jar into Isabelle/Scala

• command-line tools:

– isabelle mmt_build: build MMT inside Isabelle
– isabelle mmt_import: import content of headless PIDE

session into MMT (OMDoc and RDF/XML triples)
– isabelle mmt_server: present imported content via HTTP

server of MMT
– isabelle mmt: run interactive MMT shell inside the Isabelle

Application: Isabelle/MMT — OMDoc and RDF/XML from AFP 14

https://isabelle.sketis.net/Isabelle_MMT_CICM2019


Implementation of isabelle mmt

• command-line arguments like isabelle build for selection of
sessions (e.g. all of AFP without group very_slow)

• headless PIDE session based on Isabelle/Pure (not HOL): provide
all session theories as one big edit

• continuous parallel processing of the theory graph

– finished theories are committed in Scala to produce OMDoc
and RDF/XML

– committed theories are removed eventually (garbage collection)

Resource requirements: for AFP

• ML: 12 CPU cores, 30 GB RAM

• Scala: 2 CPU cores, 30 GB RAM

Application: Isabelle/MMT — OMDoc and RDF/XML from AFP 15



Isabelle/MMT content

OMDoc content:

• logical foundations: types, consts, facts (but: no proof terms)

• aspects of structured specifications:

– locales
– locale interpretations
– type classes (as locale interpretations)

RDF content:

• Dublin Core Mata data (from formal comments / markers)

• semi-formal document structure (section headings)

• formal status of exported MMT constants

• relations between formal items (e.g. syntactic dependencies)

• physical parameters (e.g. source size, check time)

Application: Isabelle/MMT — OMDoc and RDF/XML from AFP 16



References

• Andrea Condoluci, Michael Kohlhase, Dennis Müller, Florian Rabe,
Claudio Sacerdoti Coen, and Makarius Wenzel: Relational data
across mathematical libraries, LNAI 11617 (CICM 2019).
https://files.sketis.net/CICM-2019-RDF.pdf

Application: Isabelle/MMT — OMDoc and RDF/XML from AFP 17

https://files.sketis.net/CICM-2019-RDF.pdf


Conclusions



Conclusions

Summary:

• Isabelle technology is a mix of several sub-technologies

• Isabelle/Scala can manage all that pretty well

• Isabelle/MMT is a natural application of Isabelle/PIDE,
to export content from Isabelle/ML via Isabelle/Scala

Future work:

• convergence of batch-builds and PIDE processing

• improved scalability: technology needs to grow with the library

Conclusions 19


