Isabelle technology for
the Archive of Formal Proofs
with application to MMT

Makarius Wenzel, Augsburg
https://sketis.net

July 2019

https://sketis.net

Motivation: scalability for
Isabelle/AFP

The Archive of Formal Proofs

AFP: https://www.isa-afp.org

e repository of formalized mathematics: checked by Isabelle
e scientific journal: reviewed by 5 human editors

Maintenance model:

e everything should always work (most of the time)
e |sabelle changes are pushed through to AFP applications
e demand for fast feedback from build jobs

Motivation: scalability for Isabelle/AFP

https://www.isa-afp.org

AFP articles: text size vs. date of first appearance

I oc per article
80000

70000
60000
50000
40000
30000
20000

10000

Motivation: scalability for Isabelle/AFP

Practical time scales

Online time: max. 45min (“Paris commuter's constant™)
Offline time: max. 2h (“French lunch break™)

AFP timing: 8 processes x 8 threads, excluding very_slow
e |sabelle with main only:
7.5min elapsed time, 53min CPU time (factor 7.0)
e AFP without slow / large:
51min elapsed time, 25h47 CPU time (factor 30.3)
e AFP with slow / large only:
50min elapsed time, 12h04 CPU time (factor 14.5)

o Isabelle + AFP:
1h14 elapsed time, 42h11 CPU time (factor 34.2)

Motivation: scalability for Isabelle/AFP

Isabelle technology

What is Isabelle?

Originally: by Larry Paulson (1986/1989)
e logical framework (LF)
e generic proof assistant, e.g. for CTT, FOL, ZF, HOL

After 30 years of evolution:

e software technology for large libraries of formal mathematics
e many sub-systems with “Isabelle/XYZ" naming scheme, e.g.

Isabelle/HOL: application logic with theories and tools
Isabelle/ML: internal tool implementation language
Isabelle/Scala: external system integration language
Isabelle/PIDE: Prover IDE framework for semantic interaction

Isabelle technology

Isabelle/HOL

e old-fashioned logic (Church 1940, Gordon 1985)

e highly successful in applications

e classic set-theory with simple types

e many derived mechanisms for specifications and proofs

Note:

e |sabelle/HOL is classic mathematics, not programming
(but: tutorial “Programming and proving in Isabelle/HOL")

e Isabelle/HOL extensions usually implemented in Isabelle/ML
(“LCF approach™)

Isabelle technology

Isabelle /ML

based on Poly/ML: David Matthews (1985)

rich Isabelle/ML library

high-end IDE, e.g. for Isabelle itself via ™~ /src/Pure/RO0T.ML
source-level debugger

Main technology: scalable parallel functional programming

fast run-time compilation to produce fast machine-code
shared-memory parallelism (threads/locks or futures)
stop-the-world garbage collection with internal parallelism
implicit substructure-sharing of pure values (strings, terms, etc.)
dumped-world images for fast reloading of semantic state

compact representation of data on 64 bit hardware:
32 bit addressing of max. 16 GB heap space

Isabelle technology

Isabelle/Scala (1)

based on regular Scala, hosted on Java platform (version 11)

e functional programming style similar to Isabelle/ML

e overlapping parts of libraries with Isabelle /ML

Main technology:

multi-threaded JVM with parallel garbage collection

efficient functional programming on the JVM

access to external databases (notably SQLite, PostgreSQL)
access to TCP services (notably SSH, HTTP)

support for Mercurial (the standard SCM for Isabelle + AFP)

Isabelle technology

Isabelle/Scala (2)

Benefits:

e proper functional programming (with types)
e proper data structures (e.g. acyclic graph for dependencies)
e avoid system “scripts’ (e.g. bash, perl, python, ruby)

Isabelle sources:

e Isabelle/Scala: 1.6 MB
e |sabelle/ML/Pure: 2.4 MB

Isabelle/Scala applications:

e Isabelle/jEdit: GUI application (AWT /Swing)

e Isabelle/VSCode: Language Server Protocol server (JSON)
e |sabelle command-line tools (see isabelle)

Isabelle technology 10

Isabelle/PIDE

e Prover IDE framework, implemented in Scala and ML
e prover as formal document processor (input: edits, output: reports)
e Headless PIDE as interactive object under program control, e.g.

— export of formal content with access to the internal ML context
— update of theory sources based on PIDE markup
— detailed recording of timing information

Applications:
e Isabelle/jEdit: PIDE user-interaction via text editor
e Isabelle/MMT: PIDE document export (OMDoc and RDF/XML)

Isabelle technology 11

Application: Isabelle/ MMT —
OMDoc and RDF /XML from AFP

MMT

MMT: https://uniformal.github.io

e "‘Meta Meta-Theory” by Michael Kohlhase, Florian Rabe et-al
e OMDoc file-format (based on XML)

e documents with formal, informal, semi-formal content

e MMT sub-projects: importers for various languages

e mmt.jar: Scala library with MMT services

Application: Isabelle/MMT — OMDoc and RDF/XML from AFP

13

https://uniformal.github.io

Isabelle/MMT

Isabelle/MMT: https://isabelle.sketis.net /Isabelle_MMT_CICM2019

e |sabelle component that incorporates mmt . jar into Isabelle/Scala

e command-line tools:

isabelle mmt_build: build MMT inside Isabelle

isabelle mmt_import: import content of headless PIDE
session into MMT (OMDoc and RDF/XML triples)

isabelle mmt_server: present imported content via HTTP

server of MMT
isabelle mmt: run interactive MMT shell inside the Isabelle

Application: Isabelle/MMT — OMDoc and RDF/XML from AFP 14

https://isabelle.sketis.net/Isabelle_MMT_CICM2019

Implementation of isabelle mmt

e command-line arguments like isabelle build for selection of
sessions (e.g. all of AFP without group very_slow)

e headless PIDE session based on Isabelle/Pure (not HOL): provide
all session theories as one big edit

e continuous parallel processing of the theory graph

— finished theories are committed in Scala to produce OMDoc
and RDF /XML
— committed theories are removed eventually (garbage collection)

Resource requirements: for AFP

e ML: 12 CPU cores, 30 GB RAM
e Scala: 2 CPU cores, 30 GB RAM

Application: Isabelle/MMT — OMDoc and RDF/XML from AFP 15

Isabelle/MMT content

OMDoc content:
e logical foundations: types, consts, facts (but: no proof terms)
e aspects of structured specifications:

— locales
— locale interpretations
— type classes (as locale interpretations)

RDF content:

Dublin Core Mata data (from formal comments / markers)
semi-formal document structure (section headings)

relations between formal items (e.g. syntactic dependencies)

[

[

e formal status of exported MMT constants

o

e physical parameters (e.g. source size, check time)

Application: Isabelle/MMT — OMDoc and RDF/XML from AFP

16

References

e Andrea Condoluci, Michael Kohlhase, Dennis Muller, Florian Rabe,
Claudio Sacerdoti Coen, and Makarius Wenzel: Relational data
across mathematical libraries, LNAI 11617 (CICM 2019).
https:/ /files.sketis.net/CICM-2019-RDF .pdf

Application: Isabelle/MMT — OMDoc and RDF/XML from AFP 17

https://files.sketis.net/CICM-2019-RDF.pdf

Conclusions

Conclusions

Summary:

e [sabelle technology is a mix of several sub-technologies
e |sabelle/Scala can manage all that pretty well

e |sabelle/MMT is a natural application of Isabelle/PIDE,
to export content from Isabelle/ML via Isabelle/Scala

Future work:

e convergence of batch-builds and PIDE processing
e improved scalability: technology needs to grow with the library

Conclusions

19

