
The Isabelle Prover IDE
after 10 years of development

Makarius Wenzel
https://sketis.net

August 2018

λ
→

∀
=Is

ab
el
le

β

α

PIDE



History of Prover Interaction



TTY loop (≈ 1979)

(Wikipedia: K. Thompson and D. Ritchie at PDP-11)

• user drives prover, via manual copy-paste

• synchronous and sequential

History of Prover Interaction 2



Proof General and clones (≈ 1999)

• user drives prover, via automated copy-paste and undo

• synchronous and sequential

History of Prover Interaction 3



CoqIDE (≈ 2016)

• more formal interaction protocol

• recent support for asynchronous proofs

History of Prover Interaction 4



Isabelle/PIDE/jEdit 10.0 (August 2018)

• stateless

document

model

• asynchronous

interaction

• continuous

checking

• parallel

processing

• scalable

applications

History of Prover Interaction 5



Isabelle/PIDE timeline

Parallel Isabelle

• 2005 “free lunch is over”: multicore CPUs become mainstream

• 2006–2008 Isabelle + Poly/ML support parallel threads

Isabelle/jEdit

• 2008–2010: experimental versions of Isabelle/jEdit Prover IDE

• October 2011: release of Isabelle/jEdit 1.0

• October 2014: discontinued Isabelle TTY and Proof General

• August 2018: Isabelle/jEdit 10.0 as “filthy-rich client”

Isabelle/VSCode

• October 2017: release of Isabelle/VSCode 1.0

• August 2018: release of Isabelle/VSCode 1.1

History of Prover Interaction 6



Prover IDE architecture



PIDE principles (2008)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports

Tools may participate in document processing and markup

User composes document — assisted by rendering of PIDE markup

Challenge: introducing genuine interaction into ITP

• many conceptual problems

• many technical problems

• many social problems

Prover IDE architecture 8



The connectivity problem

private
protocolAPI API

S
ca
la

M
L

ML threads

ML futures

POSIX processesPOSIX processes

Java threads

Scala futures

TCP/IP servers

Prover: MLEditor: Scala

JVM bridge

Design principles:

• private protocol for prover connectivity
(asynchronous interaction, parallel evaluation)

• public Scala API
(timeless, stateless, static typing)

Prover IDE architecture 9



PIDE protocol functions

Editor Prover

commands

messages

• type protocol command = name → input → unit

• type protocol message = name → output → unit

• outermost state of protocol handlers on each side (pure values)

• asynchronous streaming in each direction

−→ editor and prover as stream-procession functions

Prover IDE architecture 10



Approximative rendering of document snapshots

Editor Prover

edits

markup

p
ro
ce
ss
in
g

a
p
p
ro
x
im

a
ti
o
n

Δt

1. editor knows text T , markup M , and edits ∆T (produced by user)

2. apply edits: T ′ = T + ∆T (immediately in editor)

3. formal processing of T ′: ∆M after time ∆t (eventually in prover)

4. temporary approximation (immediately in editor):
M̃ = revert ∆T ; retrieve M ; convert ∆T

5. convergence after time ∆t (eventually in editor):
M ′ = M + ∆M

Prover IDE architecture 11



Markup reports

Problem: round-trip through several sophisticated syntax layers

Solution: execution trace with markup reports

text text

term

re
po
rtre

po
rt

position

Prover IDE architecture 12



PIDE application: Isabelle/jEdit



Building blocks

jEdit: http://www.jedit.org

• sophisticated text editor implemented in Java

Scala/JVM: https://www.scala-lang.org

• higher-order functional-object-oriented programming

Isabelle/Scala/PIDE:

• general framework for Prover IDEs

• with parallel and asynchronous document processing

Isabelle/jEdit:

• filthy rich client: requires 4–8 GB memory, 2–4 CPU cores

• main example application of the PIDE framework

• default user-interface for Isabelle

PIDE application: Isabelle/jEdit 14

http://www.jedit.org
https://www.scala-lang.org


Notable features of Isabelle/jEdit

• good text rendering, with Isabelle fonts (symbols from TEX)

• smooth input methods for non-ASCII symbols

• text indentation and folding

• various tree views: outline, context, markup

• panels for Output, State, Query etc.

• nested tooltips and hyperlinks

• highlighting of formal scopes (“def” vs. “ref” positions)

• completion for syntax (editor) and semantics (prover)

• add-on tools: Quickcheck, Sledgehammer etc.

• document file dependencies, including external ML file, SML file

• Isabelle/ML IDE with source-level debugger

• PIDE self-application to Isabelle/ML/Pure bootstrap

• conventional document structure with semantic IDE for BibTEX

PIDE application: Isabelle/jEdit 15



Example: Semantic IDE for BibTeX

PIDE application: Isabelle/jEdit 16



PIDE application: Isabelle/VSCode



Building blocks

• VSCode editor platform:

– recent open-source project by Microsoft
“Code editing. Redefined. Free. Open Source. Runs everywhere.”

– based on Electron application framework
with Node.js, Chromium browser, V8 JavaScript engine

– IDE for TypeScript in TypeScript (typed JavaScript)

• Isabelle/Scala/PIDE:

– slightly reworked for multiple front-ends
– Language Server Protocol based on JSON-RPC

• VSCode Isabelle extension: via VSCode marketplace

PIDE application: Isabelle/VSCode 18



Isabelle/VSCode 1.0 (October 2017)

PIDE application: Isabelle/VSCode 19



Notable features of Isabelle/VSCode

• static syntax tables for Isabelle .thy and .ML files

• implicit dependency management and formal checking of sources

• text overview lane with formal status

• prover messages within the source text (errors, warnings etc.)

• semantic text decorations: colors for free/bound variables, inferred
types etc. (Language Server Protocol extension)

• highlighting of formal scopes (“def” vs. “ref” positions)

• proof state output via VSCode message channel or GUI panel

• HTML preview via separate GUI panel

• completion for syntax (editor) and semantics (prover)

• spell-checking of informal texts

PIDE application: Isabelle/VSCode 20



Isabelle/jEdit 10.0 vs. Isabelle/VSCode 1.1

Isabelle/jEdit: “game engine”

• scalable application

• Java with Swing GUI

• multiple threads

• simple text buffer model

• free-form layered painting (Graphics2D)

Isabelle/VSCode: “smart text editor”

• minimal experiment

• JavaScript with HTML/CSS

• cooperative multitasking

• rich text buffer model

• restricted text decoration model (CSS)

PIDE application: Isabelle/VSCode 21



PIDE application: Isabelle server



Isabelle server

Approach:

• Isabelle/Scala as “terminate stay-resident” application

• socket communication with JSON or YXML protocol

• multiple servers per user (named database entries)

• multiple sessions per server (ML processes)

• multiple use_theories invocations per session (PIDE edits)
https://sketis.net/2018/the-isabelle-server-responsive-control-of-prover-sessions

Look-and-feel:

• file-system state turned into PIDE document updates

• asynchronous command-loop with explicit task identification

• no GUI

PIDE application: Isabelle server 23

https://sketis.net/2018/the-isabelle-server-responsive-control-of-prover-sessions


Isabelle server 1.0 (August 2018)

$ isabelle server &

$ isabelle client

help

session_start {"session": "HOL"}

use_theories {"session_id": ..., "theories": ["~~/src/HOL/ex/Seq"]}

session_stop {"session_id": ...}

shutdown

Note:

• manual experimentation: need to provide commands slowly

• program control: need to handle asynchronous notifications

PIDE application: Isabelle server 24



Conclusions



Future work

Isabelle/PIDE continued:

• Isabelle/jEdit: more scaling, e.g. all of AFP in one PIDE session

• Isabelle/VSCode: better integration as standalone application

• Isabelle server: SSH tunneling and PIDE as “cloud” service

Further scaling:

• scaling up — big Isabelle/ML/Scala/Java/PIDE session on server

• scaling down — small PIDE front-end on client, e.g. via Scala.js

Open problem:

• Missing PIDE support for Coq, HOL4, HOL Light, . . .

• I am still open for collaborations!

Conclusions 26


