Scaling Isabelle Proof Document Processing

Makarius Wenzel*
December 2017

This is a study of performance requirements, technological side-conditions, and possibilities for scal-
ing of formal proof document processing in Isabelle and The Archive of Formal Proofs (AFP). The
approaches range from simple changes of system parameters and basic system programming with
standard APIs to more ambitious reforms of Isabelle and the underlying Poly/ML system. The run-
ning examples for typical scalability issues are existing formalizations of classical analysis and dif-
ferential equations. Such applications can be further extrapolated towards a development of Financial
Mathematics (e.g. Itd calculus).

This document is based on Isabelle/74bd55f1206d and AFP/f6¢ca248dd250 (November 2017),
with minor changes over the official release Isabelle2017 (October 2017).

Contents

1 Introduction 2
1.1 The Isabelle platform: formal document processing 2
1.2 The Archive of Formal Proofs (AFP) 4

2 Common modes of operation 5
2.1 Editing: Prover IDEo 5
2.2 Building: batch-mode 6
2.3 Browsing: client-server applications 7

3 Technical approaches to scaling 8
3.1 Skipped proofsinthe ProverIDE L L. 8

3.2 Forked proofsinthe Prover IDE 9

3.3 Swapping of PIDE markup database: JVM heap vs. external database 9
3.4 Distributed batch-builds o oo o 9

3.5 Heap hierarchy compression: skipping intermediate sessions 9

0

3.6 Headless PIDE server for external tool integration 1

3.7 Isabelle Dockercontainer L 10
3.8 Fork of ML processes instead of heap load/store/load cycles 10
3.9 Direct transition from failed batch-build to IDE session 11
3.10 Direct transition from finished IDE session to saved heapimage 11
3.11 Upgrade of PIDE edits and markup to Mercurial changesets with external database . . . 11
3.12 Lazy Isabelle context elements (locales) 11
3.13 Distributed Poly/ML processes with virtual shared memory 12
3.14 Reducing Poly/ML memory footprint on native 64bit 12

*Supported by Mu Operator GmbH, Frankfurt am Main. Document published with permission.

M. Wenzel: Scaling Isabelle 2

1 Introduction

1.1 The Isabelle platform: formal document processing

Isabelle http://www.cl.cam.ac.uk/research/hvg/Isabelle was originally developed in 1986/1989 by L. C.
Paulson as a generic proof assistant, for a variety of logics based on minimal Higher-Order Logic
(Isabelle/Pure).

After three decades of ongoing development, the Isabelle platform has become a universal framework
for formal proof documents that are written in domain-specific formal languages. E.g. symbolic A-
calculus for mathematical statements, the Isar language for formal proofs, the Eisbach language for proof
methods, the Isabelle document language for informal explanations with embedded formal entities. The
Isabelle/ML language is somewhat special: it is both the implementation and extension language of the
formal environment; it also allows to introduce new domain-specific languages (e.g. a language of syntax
diagrams with references to formal entities [4, §4.5]).

In recent years, Isabelle/Scala has become the language for Isabelle systems programming outside the
formal environment: it manages Isabelle source files, Isabelle/ML processes and the results of formal
checking; it is able to connect the pure world of formalized mathematics to the real world of user-
interfaces (Prover IDE) and network services (e.g. for HTTP or JSON-RPC).

A user who downloads and runs the main Isabelle application encounters a “filthy-rich client” that is
based on the full stack of Isabelle technologies, tools and languages. It presents itself as an advanced
editor with semantic annotation of document sources, asynchronous checking in real-time, with parallel
processing on multicore hardware.

Isabelle document sources are organized as theory files that typically contain:

e mathematical definitions, statements and proofs,
e informal explanations in natural language with embedded formal entities,

e cxecutable code that is generated from specifications: functional programs in SML, OCaml,
Haskell, Scala.

A collection of theory files is called session. Each session is derived from a parent session, which defines
an overall session tree with re-use of already checked results; the Pure session is the root.

Here are some example sessions from the official Isabelle distribution, with linear session-parent depen-
dencies in the following order:

1. Pure: the main system implementation and bootstrap environment. This is rarely used directly in
applications.

2. HOL: classical Higher-Order Logic with many fundamental theories and tools. This is the canonical
starting point for Isabelle applications.

3. HOL-Analysis: classical analysis based on topology etc. (see http://isabelle.in.tum.de/dist/library/
HOL/HOL- Analysis).

4. HOL-Probability: probability theory based on integration and measure theory etc. (see http:
/lisabelle.in.tum.de/dist/library/HOL/HOL-Probability).

The internal theory structure of HOL-Analysis is visualized in figure 1. Each node is one big theory file:
a total of 72 files and 6.5 MB source text. Processing all of it on 8 CPU cores requires approx. 4.5 min
elapsed time, 25 min CPU time, and 3.5 GB memory.

http://www.cl.cam.ac.uk/research/hvg/Isabelle
http://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis
http://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis
http://isabelle.in.tum.de/dist/library/HOL/HOL-Probability
http://isabelle.in.tum.de/dist/library/HOL/HOL-Probability

M. Wenzel: Scaling Isabelle 4

1.2 The Archive of Formal Proofs (AFP)

The Archive of Formal Proofs (AFP) https://www.isa-afp.org collects Isabelle sessions produced by
users: it is organized like a scientific journal. At the same time, it serves as library of formalized
mathematics: contributors are welcome to build on existing work. The AFP has grown substantially
in recent years, now approaching approx. 400 articles (sessions) and approx. 300 authors, see also
https://www.isa-afp.org/statistics.html.

Figure 2 on page 13 shows all sessions of Isabelle + AFP that are connected to HOL-Analysis wrt. the
parent-session relation: a total of 75.

Figure 3 restricts this graph to sessions connected to Ordinary_Differential_Equations (and its
clone HOL-0DE), which extends HOL-Analysis by theories for ordinary differential equations, includ-
ing verified algorithms for numeric approximations. This development ultimately leads to sessions
Lorenz_CO and Lorenz_C1, which perform symbolic reasoning by computation and require approx.
50 h CPU time total.

Differential_Dynamic_Logic | [HOL-ODE-Refinement |

HOL-ODE-Numerics

HOL-ODE-Examples | [Lorenz _Approxima tion |

Figure 3: Sessions connected to Ordinary_Differential_Equations

When developing such applications, the path through the parent-session hierarchy is critical. Figure 4
shows resource requirements for the full stack leading up to session Lorenz_Approximation (8§ CPU
cores, 64 bit Poly/ML with several GB memory). All of this needs to be processed on the spot, when
loading e.g. Lorenz_CO into the Prover IDE for the first time.

session stored heap elapsed time CPU time
Pure 17MB 0.2 min 0.2 min
HOL 227MB 2.7 min 9.3 min
HOL-Analysis 127MB 44min 24.5min
Ordinary_Differential_ Equations 54MB 2.0 min 8.3 min
HOL-ODE 3MB 0.0 min 0.0 min
HOL-ODE-Refinement 151 MB 3.8min 21.4min
HOL-ODE-Numerics 110 MB 15.8min 35.8 min
Lorenz_Approximation 22MB 3.5min 7.6 min
total 711 MB 324min 107.1 min

Figure 4: Cumulative resource requirements for Lorenz_Approximation

If we now envisage a formalization of Financial Mathematics (e.g. Itd calculus) it might start with ex-
isting HOL-Analysis or HOL-Probability and develop add-ons similar to the HOL-ODE hierarchy —
and much more. It is clear that more scaling of the technology is required to support such applications
conveniently.

https://www.isa-afp.org
https://www.isa-afp.org/statistics.html

M. Wenzel: Scaling Isabelle 5

2 Common modes of operation

The development of a library of formal proof documents, which is based on contributions by other people
and subject to continuous changes, involves the following modes of operation:

Editing of many theories from different sessions, with immediate feedback from the prover process.
Building of session images and databases in batch-mode.

Browsing existing library content.

Isabelle provides substantial support for editing and building, namely the Prover IDE (§2.1) and tools
for batch-builds (§2.2). Both have slightly different profiles of resource usage, and different demands for
further scaling.

In contrast, browsing (§2.3) is somewhat underdeveloped: HTML and PDF documents are generated
in batch-builds, but the content only refers to superficial syntax. Full semantic annotations could be
“browsed” in the Prover IDE, but this requires costly reprocessing in interaction, Proper PIDE browsing
could be based on a HTTP server for the document model with its markup.

2.1 Editing: Prover IDE

After download of the main Isabelle application, users first encounter the Isabelle/jEdit front-end (see
figure 5, and figure 6 on page 14). This semantic editor is based on an agglomerate of technologies called
Isabelle/PIDE. See also the Isabelle/jEdit manual [5]; PIDE concepts are further explained in [6] and [7].

[] 0] & Seq.thy
@@ & 9¢ X D0 @ CDEE BX & @ e
DSeq.lhy(flSABELLE,-RO?T.isrc;Houexn | 7] isabelle 2]
section <Finite sequences:> _— g O
Filter: 4
-
Seq.thy
= |theo ry Seq ¥ section «Finite sequences: %
. . theory Seq ey
imports Main datatype 'a seq = Empty | Seq 'a "'a s &
begin fum reverse (- "o seq = 2 309
lemma conc_empty: "conc xs Empty = xs"
lemma conc_assoc: “conc lconc xs ys) z:
' = ' oo i lemma reverse_conc: "reverse (conc xs)
datatype 'a seq = Empty | Seq 'a "'a seq Lo reveree ravarss. ravarss (rever
& |fun conc :: "'a seq =+ 'a seq = 'a seq"l
where
"conc Empty ys = ys"
| "conc (Seq x xs) ys = Seq x (conc xs ys)"
3 A
= |fun reverse constant "Seq.seq.Seq"
where 11 'a = 'aseq = 'aseq
"reverse cmpcy cmpcy
| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"
& |Lemma conc_empty: "conc xs Empty = xs"
l by (induct xs) simp_all
Proof state [Auto update Update Search: v oloo% v
constants
conc :: "'a seq = 'a seq = 'a seq"
Found termination order: "(Ap. size (fst p)) <*mlex*> {}"
B~ Output
13,39 (200/789) (isabelle,isabelle, UTF-8-Isabelle) UG I/ 495MB 4:46 PM

Figure 5: The Isabelle/jEdit Prover IDE

Isabelle/PIDE provides an impression of direct editing of formal document content, while the prover is
continuously checking in the background. This resembles an advanced “spell-checker” for documents of
formalized mathematics, or any other language that is embedded into Isabelle theories. There is even a
conventional spell-checker for comments written in English.

M. Wenzel: Scaling Isabelle 6

The Prover IDE operates on whole projects (sessions), which may consist of hundreds of theory files,
with a typical size of 50-500 KB for each theory.

Isabelle users can get started with a solid consumer laptop with 4 CPU cores and 8 GB memory, but
this is barely sufficient for medium-sized sessions like HOL-Analysis. For resource requirements and
scalability of interactive PIDE sessions, the following main factors are relevant:

The Isabelle/ML process for the prover back-end. It runs in 32 bit mode by default, even though a
proper 64 bit platform is now required for the Isabelle application. Thus ML can access a total
of approx. 3.5GB stack + heap space: the process starts with 500 MB and expands or shrinks
the address space according to the current demands; this is a consequence of normal memory
management and garbage collection. When the heap becomes critically full, memory is reclaimed
by sharing substructures of immutable ML values: this is possible thanks to the clean mathematical
semantics of ML. Situations of heavy-duty memory management can cause notable pauses during
interaction, usually in the range seconds up to half a minute.

For very big applications, the 32 bit model is no longer feasible. Running the ML process in 64 bit
mode requires almost double as much memory, due to uniform representation of values and point-
ers as one machine word. So 64 bit ML only makes sense for hardware with at least 16-32 GB
memory.

The Isabelle/Scala process for the Prover IDE front-end. The jEdit editor runs on the same Java Vir-
tual Machine (JVM). The PIDE markup for theory content that is produced by the prover is stored
in Isabelle/Scala as one big markup tree. Whenever the editor renders text or reacts to mouse
events, it needs to retrieve that information in real-time (1-10 ms). This works well up to a certain
session size, but when the heap of the JVM fills up, it can become unresponsive or even unstable.

By default, the heap size for the Isabelle/jEdit application is restricted to 0.5-2.5 GB. This is a
concession to average users with average hardware, in order to get started without manual config-
uration. Increasing the JVM heap boundary requires a restart of the application, see also chapter 7
“Known problems and workarounds” in the Isabelle/jEdit manual [5]. For medium-sized sessions
like HOL-Analysis the default JVM heap sizes should be doubled.

Much of the potential for scaling is based on careful inspection how the Isabelle/ML and Isabelle/Scala
processes really work, both by adjusting tuning parameters and by more profound reforms, see also §3.

2.2 Building: batch-mode

Batch builds are implicit in the Prover IDE: after startup of Isabelle/jEdit there is a check if the specified
session heap file is up-to-date wrt. its sources. Otherwise, it is built on the spot, notably on the first start
of the Isabelle application. This can take approx. 3 min for the default HOL session. Users can also switch
Isabelle/jEdit to a different base session, e.g. HOL-Analysis or HOL-Probability. This requires a
restart of the application — or a slightly tricky reload of the Isabelle plugin within jEdit — in order to
trigger the batch-build process again and load the specified session image.

The Isabelle command-line tool isabelle build provides numerous options to manage batch-builds;
the tool is documented in chapter 2 of the Isabelle System Manual [3]. That is particularly relevant for
building many sessions simultaneously, using multiple build processes (option —jN) each with multiple
threads (option -o threads=M). On high-end multicore hardware (say with 24 cores), this allows to
build the full Archive of Formal Proofs in less than 1 h elapsed time (excluding the specifically marked
group of slow sessions).

Advanced applications of isabelle build should avoid fancy shell scripting, but use the underlying
Isabelle/Scala functions directly: Build.build(), Sessions.load(), Sessions.deps(). An exam-
ple for such Isabelle/Scala system-programming is the infrastructure for nightly builds of Isabelle + AFP:
results are presented at http://isabelle.in.tum.de/devel/build_status. The implementation uses simple and
convenient Isabelle/Scala modules for SSH remote connections, Mercurial source code management, and
SQL database access (SQLite and PostgreSQL).

http://isabelle.in.tum.de/devel/build_status

M. Wenzel: Scaling Isabelle 7

Batch-builds are traditionally presented as a closed process, to produce the required heap images for a
PIDE session, or to test many sessions from a library. From the perspective of scalability, it would be
convenient to allow transitions between interaction and batch-builds in two directions:

1. A failed batch-build could be turned directly into an editing session, without starting it again, see
also §3.9.

2. A finished IDE session could be saved as a heap image, for re-use in other IDE sessions or batch-
builds, see also §3.10.

This requires more substantial changes of how Isabelle manages session images, but the underlying
Poly/ML system already supports such mixed modes of operation.

2.3 Browsing: client-server applications

In contrast to editing and building, browsing may be characterized as read-only access to existing content
of the library, usually with a more light-weight front-end than a full-scale IDE, and potentially with
better rendering quality than plain text. Current HTML browsers have the potential to deliver this, but
Isabelle only provides rather old-fashioned static HTML that visually resembles the syntax highlighting
in Isabelle/jEdit, e.g. see http://isabelle.in.tum.de/dist/library/HOL/HOL- Analysis/Sigma_Algebra.html.

Isabelle/jEdit already provides an action isabelle.preview that does similar HTML rendering of the
current theory buffer. It uses semantic markup of PIDE and thus provides more details of nested lan-
guages. This is implemented via an HTTP server within the Prover IDE: the preview command opens a
standard web-browser on a URL that points to the internal document model.

An alternative is the experimental Isabelle/VSCode front-end for Isabelle/PIDE, which has been pub-
lished with Isabelle2017 (October 2017) for the first time (see also https://marketplace.visualstudio.com/
items?itemName=makarius.Isabelle2017). Visual Studio Code is an open-source project by Microsoft; it
is based on the Electron platform, which consists of the Chromium web-browser with Node.js runtime
system. The resulting application is a plain-text editor with some extra styles and text markup, but it is
also possible to produce HTMLS5 previews on the spot, see figure 7 on page 15 (again with the same
old-fashioned HTML output of Isabelle).

This means, VSCode is an editor and a browser at the same time. The rendering quality in
Isabelle/VSCode is still below Isabelle/jEdit, but the underlying Chromium platform has the potential to
approach the typesetting quality of mathematical textbooks or journals, together with semantic markup
and hyperlinks as usual for websites. VSCode is also notable for its Language Server Protocol, which is
based on JSON-RPC and publicly maintained by Microsoft. Thus the PIDE document model becomes
accessible by a public protocol, outside of the Isabelle/Scala programming environment.

Extrapolating current possibilities for browsing a bit further leads to interesting application scenarios:

1. Remote HTTP service for Isabelle/PIDE, with regular web-browser as local client: strictly for
browsing HTML + CSS + JavaScript, but no editing. The server retrieves PIDE markup for theories
from a database that has been produced by batch-builds beforehand. The server does not require a
prover process. The client does not require an editor.

2. Remote Isabelle/PIDE service with a custom display protocol — similar to the Language Server
Protocol of VSCode — with various local editor front-ends:

(a) Local Isabelle/jEdit without Isabelle/ML and without the full Isabelle/Scala markup tree.
The user merely has a medium-sized JVM application (2 CPU cores, 2 GB memory) with
semantic markup restricted to the open theory buffers in the editor. The Isabelle/ML prover
process and the Isabelle/Scala PIDE process with full markup information run on the server
(several CPU cores and several GB memory).

(b) Local Isabelle/VSCode with minimal Isabelle/Scala process to connect to the PIDE server
as above, with similar resource requirements. Here the local application still consists of two
runtime environments: VSCode on Node.js / JavaScript and Isabelle/Scala on the Java VM.

http://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis/Sigma_Algebra.html
https://marketplace.visualstudio.com/items?itemName=makarius.Isabelle2017
https://marketplace.visualstudio.com/items?itemName=makarius.Isabelle2017

M. Wenzel: Scaling Isabelle 8

(c) Local Isabelle/VSCode without the Isabelle/Scala JVM process. Everything runs within the
Node.js environment of VSCode. The required Scala modules for communication with the
Isabelle/PIDE server are translated to JavaScript using Scalals https://www.scala-js.org —
but note that this is relatively new emerging technology. This approach has the potential to
reduce local resource requirements by 50% (1 CPU core, 1 GB memory) and require less
disk space by omitting the local JVM installation.

The web-client from point 1 above could in principle be generalized towards an editor (or IDE) that runs
within common web-browsers, but I consider this merely a theoretical possibility due to the “HTML
browser hell”. There are too many different browsers in different versions, and diverging interpretations
of various web-standards. Projects for web-based IDEs exist, but are still lagging behind “real” desktop
applications.

In contrast, point 2(c) has better prospects to achieve a browser-based IDE: there is only one Chromium
engine in VSCode, and the whole application may be packaged for users to deliver exactly one well-
defined version. Thus it becomes a web-application that is delivered like a traditional desktop applica-
tion, where everything is properly integrated and tested. Microsoft distributes VSCode under the slogan:
“Code editing. Redefined. Free. Open Source. Runs everywhere.”, which raises the expectation that it
should work smoothly on all platforms, like standard Firefox or Chromium browsers.

3 Technical approaches to scaling

The subsequent approaches to scaling take technological side-conditions as a starting point, and sketch
possibilities to improve certain aspects of the overall system. This is a bottom-up view on the problem.

3.1 Skipped proofs in the Prover IDE
Status: realistic, short-term

Approach: Important repository versions are fully processed in the background, e.g. “nightly builds”.
Successful results are recorded by a central database server (PostgreSQL). A local repository pull can be
re-checked quickly by omitting proofs that have already been checked before: implicit sorry commands
are inserted by the system, according to database content that is retrieved on the spot. This refines the
existing system option skip_proofs, which either skips all proofs or none.

Consequences: Better IDE performance when editing existing library sessions: only the relevant non-
proof parts need to be checked, in order to explore the formal context in a particular situation. The timings
in figure 4 (all proofs checked) vs. figure 8 (all proofs skipped) provide some hints about the potential
of this approach. Sessions like HOL-Analysis with many conventional proofs benefit greatly, but other
sessions like HOL-0DE-Numerics consist of heavy computations or synthesis of results that need to run
in full.

session stored heap elapsed time CPU time
Pure 17MB 0.2 min 0.2 min
HOL 209 MB 2.2 min 3.9 min
HOL-Analysis 103 MB 1.3 min 3.2 min
Ordinary_Differential_ Equations 47MB 1.0 min 1.9 min
HOL-O0DE 3MB 0.0 min 0.0 min
HOL-ODE-Refinement 138 MB 1.9 min 6.7 min
HOL-ODE-Numerics 104 MB 13.5 min 16.5 min
Lorenz_Approximation 19MB 2.8 min 3.7 min
total 640 MB 229min 36.1 min

Figure 8: Cumulative resource requirements for Lorenz_Approximation with skip_proofs

Conclusion: A straight-forward continuation of the original “trusted inference kernel” approach of LCF,

https://www.scala-js.org

M. Wenzel: Scaling Isabelle 9

extended to a trusted database of already finished proofs. Great potential to speed up the development
cycle. Final checking of results can be still done without in batch-mode, without such shortcuts.

3.2 Forked proofs in the Prover IDE

Status: realistic, mid-term

Approach: The full model of parallel proofs (and sub-proofs) of Isabelle batch-builds is integrated into
the interactive Prover IDE. So far the parallelism of PIDE has been limited to theory graph structure,
terminal proof steps (by method), and asynchronous print functions (e.g. implicit print_state or sledge-
hammer via GUI panel).

Consequences: Faster proof processing in the Prover IDE on machines with many cores. Less impact on
under-powered machines.

Conclusion: This old idea has not been implemented yet, because most users have under-powered ma-
chines and require performance tuning in different areas.

3.3 Swapping of PIDE markup database: JVM heap vs. external database
Status: realistic, short-term

Approach: Instead of accumulating semantic PIDE markup within Isabelle/Scala (which is bounded by
the JVM heap) there is an external database to absorb theories that are presently unused in the editor. In
effect, JVM data is swapped in and out wrt. a database file (SQLite). A more ambitious approach could
also use a full database server (PostgreSQL).

Consequences: Reduced load on the JVM, which does not scale beyond a few GB. The conceptual
model to apply PIDE to a whole library like AFP has better chances to succeed.

Conclusion: A worth-while continuation of recent efforts to unify the data model of batch-builds with the
Prover IDE, with solid underpinning by well-established database technology that is already integrated
into Isabelle/Scala.

3.4 Distributed batch-builds
Status: realistic, short-term

Approach: The idea is to connect equivalent Isabelle installations via ssh command-line execution: a
local user runs a local Isabelle/Scala tool that invokes isabelle build remotely and downloads the
resulting heap image — which could then be used in a local Prover IDE session.

Consequences: Much faster building of an IDE context, if the local machine is relatively slow, the remote
server is very fast, and the network connection fast enough for 100-1000 MB download of heap images.

Conclusion: This approach is simple and useful. It is already used by the developers of IsaFoR/CeTa http:
/lcl-informatik.uibk.ac.at/software/ceta as an exercise in Isabelle/Scala system-programming, combined
with the rsync tool. It is not yet part of the official Isabelle release, because the notion of “equivalent”
Isabelle installations on the remote system requires further clarification.

3.5 Heap hierarchy compression: skipping intermediate sessions
Status: emerging, short-term

Approach: Thanks to session-qualified theory names in Isabelle2017, the theory name space is now in-
dependent of the accidental session heap hierarchy. This allows the Isabelle build process to rearrange
the composition of sessions on the spot. Shortly after the Isabelle2017 release, options such as isabelle

http://cl-informatik.uibk.ac.at/software/ceta
http://cl-informatik.uibk.ac.at/software/ceta

M. Wenzel: Scaling Isabelle 10

jedit -A ancestor_session -S target_session have emerged, in order to specify an interval in the ses-
sion stack that should be turned into just one heap image. Further refinements of this idea are possible,
especially a combination with distributed builds (§3.4).

Consequences: Faster local builds where session heap hierarchies are overly complex or contain many
theories that are not required in the final image.

Conclusion: Very useful reform, based on simple reorganization of the local build process, only small
changes of existing Isabelle system tools.

3.6 Headless PIDE server for external tool integration
Status: emerging, short-term

Approach: The main API operations for PIDE edits and batch-builds are unified within a headless server
process that understands JSON-RPC, for example.

Consequences: External tools can easily communicate with a continuously running Isabelle process.
Costly startup of toplevel command-line tools is avoided.

Conclusion: Relevant moves towards better integration of Isabelle into other tool environments.

3.7 Isabelle Docker container
Status: emerging, short-term

Approach: If we want to move Isabelle into the cloud, it could be helpful to use a standard container
format. Isabelle2017 (October 2017) already provides an official Docker image https://hub.docker.com/r/
makarius/isabelle, which contains a regular Ubuntu Linux installation and Isabelle2017 with HOL image.

Consequences: Instead of ensuring manually that an Isabelle installation on Linux sees the required
shared libraries for C/C++ in 32 bit mode, and a few standard tools like curl and perl, it is possible
to work with explicitly defined system images. This is sometimes convenient or even required for cloud
services, but it demands much more file-system space than conventional installation on an existing Linux
host. Docker containers also provide a checkpoint facility, but it requires much more disk space than
“saved world” images of the underlying Poly/ML system.

Conclusion: Use it when really required. Otherwise work more efficiently with direct installation on the
host operating system, together with Isabelle session images and database files as required.

3.8 Fork of ML processes instead of heap load/store/load cycles
Status: speculative, mid-term

Approach: Instead of restarting ML build processes from scratch, with full load/store/load cycles of the
heap image, the build tree is represented by a process tree of Unix forks (on Linux or Mac OS X).

Consequences: Potential performance improvement of large build jobs with many sessions. Heap images
become strictly optional. The true performance impact remains to be seen, as Poly/ML 5.7.1 (November
2017) already improves the load time of heap images significantly.

Conclusion: Something left in the back-hand, when the pressure on AFP builds increases again beyond
a tolerable amount of time.

https://hub.docker.com/r/makarius/isabelle
https://hub.docker.com/r/makarius/isabelle

M. Wenzel: Scaling Isabelle 11

3.9 Direct transition from failed batch-build to IDE session
Status: realistic, mid-term

Approach: The partial result of a failed batch-build is not thrown away, but turned into a heap image
that can be used in a PIDE session, to let the user address problems encountered in the previous attempt.

Consequences: Faster maintenance cycle for big libraries. Local or remote batch-build jobs can provide
the context for PIDE sessions more directly, than reloading from scratch.

Conclusion: Beneficial reform around the existing dumped-world model of Poly/ML, where build arte-
facts are not really meant to be static, but a dynamic database of ongoing work.

3.10 Direct transition from finished IDE session to saved heap image
Status: realistic, mid-term

Approach: The PIDE session is made persistent as a heap image. This requires careful shutdown of the
parallel PIDE protocol handler in ML, and storing of intermediate results persistently within the ML
world, similar to the classic batch-mode theory loader.

Consequences: Both interactive PIDE sessions and batch-build jobs may reuse interactively produced
session content.

Conclusion: Beneficial reforms around the existing dumped-world model of Poly/ML, where build arte-
facts are not really meant to be static, but a dynamic database of ongoing work.

3.11 Upgrade of PIDE edits and markup to Mercurial changesets with external database
Status: realistic, mid-term

Approach: The existing PIDE document model — with its edits and markup in Isabelle/Scala — is
upgraded to work with Mercurial changesets and markup stored in external databases (SQLite or Post-

greSQL).

Consequences: Semantic annotations for the persistent history of sources. Support for multi-version
editing within the same Prover IDE session.

Conclusion: A natural extension of PIDE concepts that open the perspective towards distributed editing
and browsing via distributed version control.

3.12 Lazy Isabelle context elements (locales)
Status: realistic, short-term

Approach: Some applications use a lot of internal context structure, via locales and locale interpretation:
it can require minutes just to revisit a complex context hierarchy, in order to prove new results. This could
be made more efficient by using lazy context elements for the main conclusions (notes within a context).

Consequences: Only strictly required locale facts are produced on demand. Big and complex sessions
like JinjaThreads in AFP could become much faster (presently approx. 1 h elapsed time and 3 h CPU
time on 8 cores).

Conclusion: Beneficial reduction of resource requirements, which requires modest reforms of the inter-
nal management of local theory contexts in Isabelle/Pure.

M. Wenzel: Scaling Isabelle 12

3.13 Distributed Poly/ML processes with virtual shared memory
Status: speculative, long-term

Approach: The Poly/ML runtime system is upgraded to distributed processes on multiple CPU node,
e.g. on a compute cluster with distributed memory and explicit message passing. The impression of
shared memory is reconstructed from implicit copying of data and demand. This is feasible, because
the majority of ML data structures are immutable and subject to mathematical equality of content, not
physical location.

Consequences: Even more scaling of multi-threaded ML programming, beyond a single “fat node”
towards genuine cluster computing. The cost for that is considerable complexity added to ML memory
management at run-time.

Conclusion: The classic paper on parallel Poly/ML and Isabelle/ML [1] briefly discusses possibilities
of distributed and parallel memory management, based on much earlier experiments [2]. Revisiting all
this today is probably a much bigger effort than anticipated in the past, when the underlying system was
more primitive.

3.14 Reducing Poly/ML memory footprint on native 64 bit
Status: realistic, mid-term

Approach: The idea is to use native x86_64 machine instructions in ML, but refer to heap objects
via 32 bit indexing instead of native addresses. Together with some bit shifting, this would allow to
use 16 GB heap space in terms of the classic 32 bit model (which is presently limited to 3.5 GB). See
also the JVM approach to “Compressed object pointers” https://wiki.openjdk.java.net/display/HotSpot/
CompressedOops.

Consequences: Scaling-up the available heap space without penalty for full 64 bit values. Avoid de-
pendence on legacy 32 bit C/C++ libraries, as Linux, Windows, mac OS are slowly phasing out x86
compatibility.

Conclusion: David Matthews (architect and maintainer of Poly/ML) has already made initial experi-
ments to show that the approach works, but substantial efforts would be required to push it all through
the Poly/ML compiler and run-time system. Feasibility also depends on the funding for such a project.

References

[1] D. Matthews & M. Wenzel (2010): Efficient Parallel Programming in Poly/ML and Isabelle/ML. In: ACM
SIGPLAN Workshop on Declarative Aspects of Multicore Programming (DAMP 2010). http://www4.in.tum.
de/~wenzelm/papers/parallel-ml.pdf.

[2] David C.J. Matthews & Thierry Le Sergent (1995): LEMMA: A Distributed Shared Memory with Global and
Local Garbage Collection. In: Memory Management, International Workshop IWMM 1995, Kinross, UK, pp.
297-311. https://doi.org/10.1007/3-540-60368-9_30.

[3] Makarius Wenzel: The Isabelle System Manual. http://isabelle.in.tum.de/doc/system.pdf.
[4] Makarius Wenzel: The Isabelle/Isar Reference Manual. http://isabelle.in.tum.de/doc/isar-ref.pdf.
[5] Makarius Wenzel: Isabelle/jEdit. http://isabelle.in.tum.de/doc/jedit.pdf.

[6] Makarius Wenzel (2014): Asynchronous User Interaction and Tool Integration in Isabelle/PIDE. In Gerwin
Klein & Ruben Gamboa, editors: 5th International Conference on Interactive Theorem Proving, ITP 2014,
Lecture Notes in Computer Science 8558, Springer.

[71 Makarius Wenzel (2014): System description: Isabelle/jEdit in 2014. In Christoph Benzmiiller & Bruno
Woltzenlogel Paleo, editors: User Interfaces for Theorem Provers (UITP 2014), EPTCS. http://eptcs.web.
cse.unsw.edu.au/paper.cgi?UITP2014:11.

https://wiki.openjdk.java.net/display/HotSpot/CompressedOops
https://wiki.openjdk.java.net/display/HotSpot/CompressedOops
http://www4.in.tum.de/~wenzelm/papers/parallel-ml.pdf
http://www4.in.tum.de/~wenzelm/papers/parallel-ml.pdf
https://doi.org/10.1007/3-540-60368-9_30
http://isabelle.in.tum.de/doc/system.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/jedit.pdf
http://eptcs.web.cse.unsw.edu.au/paper.cgi?UITP2014:11
http://eptcs.web.cse.unsw.edu.au/paper.cgi?UITP2014:11

13

M. Wenzel: Scaling Isabelle

(uomnyeyar uorssas-1uared 11m) ydea3d uorssas sisA[euy-TOH :g 231

(gD ¢'¢ :ss0001d WA gD 8°C :ss2001d TIN) MPAL/a[oqes] unpIim sTsATeuy-oH UOISsaS :9 2am3L]

<
—
INd TE:SANS on (IIqeSs|-g-41n‘3|[2qes!‘3||]3qes!) (¥655€/0) T'T
_ m_m>_mc<_ s|oqwAs Jawweyabpals ABnd Inding A @
— 2wnE:Zum:_u:_\s_
[ann)"uepiof] B _ oA # quwzo__ noys i
_ Suriden wwewon] 1se1q Agq JauuT po3dauuod” sjusauodwod ut PuTsn
_ o) ,J3UUT pa3dauuod, Moys
pJedidTieasn _ _ — - - — — -
= 100" uado 1dwo) usado Jauut abewt yjed o1dwts 3oedwod pasol1d dwt 3oedwod <d> yyed oy1dwrs> uosaw) Aq
Abojodo] “uayun
_ lodoL ayun] .Jauut uado, moys o
L uonauny ewiuieo] oine Aq A1dwsuou~sjusuodwodut Jsuut Butsn 1
_ 22u2612AU03”5d| .{} # Jaouut, moys o
| sbulddeewojuod| Jooud °
[wa103y 1 “eJbaul~Ayoned)| STsaylé Moys o
| Swia103y | ~ssensm| oxne Aq abewt yjzed papunoq <2 yied> Butsn 1
[w1034 epoyse] [.(2 abewt yzed) -, Jo] sjusuodwod papunoqun papunoqod HButsn
_ >doijod| .J421no papunoq -, pue (2 abewt yied -) sjusuodwod S Usd1N0, :JdINO DJBYM J31N0 UTEL(O ©
_ SquinN >1uower| 20404 Aq obewt yjed o1dwts papunog <2 yzed o1dwrs> < (> abewr yied -) pajdsuuod —> HBursn 1
_ 5L esbou] [.(> abewt yzed) -, jo] jusuodwod papunoq sey papunoqod Hursn
_ Tonmisans [eibsnT onBsea] ,Jauut pspunoq, pue (2 obewt yijed -) sjusauodwod > JUSUUT, :J4BUUT SJOYM JSUUT UTELGO UDYI o
| eJ621u] " Jenssiul| _ _ wu.MOL.u.mm"_. Aq
. ((o sbewt yzed) -) po3rdauuod —, aAey uoTiededas uamnodg uepdor Yitm o
— _m_me_J_wao\aE__ - - - -)
= = (912412 abewt yyed o1dwts dTydiowoswoy swsse :ppe dwts) Aq
3 _ LIJOPHL Ieod Bum__ew:wu_ 2 (T (x91dwod::@)adayds) oTydiowoswoy (> abewt yzed), :woy aaey o
S _ fe1uapuadsuel | xa|duwiod)] (yred dwt Tyjed adwts swsse :ppe dwts) Aq
= | sa1seg”sisAjeuy x|dwo))| .0 yyed, aney A
] __._o_pm_mwuc_uv_uoum:mIlw:mmwnwj_lmu:w_g_:cm_ - FOOLQ o
Il
« [uo1dUN4~sNonuRUo)~papunog| .J obewt yred = us91no uaTiuO0dy,
k m _ :o_umhme:___wENL:v_\v_uoum:w_.__ 0o wOmE._”Ir_HMQ = J9UUT J9T}juodj],
~ < —
2 m [ainseay anbsaqa] .2 9bewt yjed - = Jalno N Jauut,
m . — 5__«_:@3__ {1 — 1a3nn 11 1auuT 1aana papunoq -, ,J3UUT papunodq,
Wc .m [ABojodo | uonoun | x21dwod < (xa1dwod <« ead) «493no uado, ,{} # 483no,
...% m _ E:memJ:c:c__ LYsTuT4yzed-pajosuuolryied, u.cmu.mcnwu .,Jdauut uado, ,{} wm JoUuT,,
Q S = & 9J9YyMm 4310 JdUUT Sutelqo
195) g _ Jesba3u| me_ r 3 d d-and ,
. a 5 3jJdeasyyed = D> |YsSTUuT e :doo ue o ed 91dwts, sawnsse
I o] wd }Jelrsyy UsTtutiyyed, 1P T B 1awTts,,
a .X91dwod <« jeau, :: D> SIXTJ

(]

Apeal 1anoud

(10H) 3neyop

Bui}dayd snonunuo) abiung

M. Wenzel
[x]

| @ 8 Z[E

Ayyaningy uepior e

I9AJIND uepJOr waJdoayy| ©
(/sisAjeuy/TOH/24s/INOH"3T138VSI$) Ayr-aan) ueplof O

a0 A
&

® @BYS]

(L JON]

15

Scaling Isabelle

M. Wenzel

(wnrwoyD) matad1d TNLH UI-[Ing s g 19401d SPODSA/ATPqeS] :£ 2InS1g

@ oneqes 41 8-din Z:S8%edS L [0D ‘0L U]

pua

tppe 118 duTs) (sx 3onput) Aq
9SJanad 19S.18AB] 9SJBABU euwwal

(2U0D 3sJ4aA3d
.SX = (SX 8sJ43Aald)

(20sse Ju0d Ajdws duod :ppe 11 dwTs) (sx 3onput) Aq
. (SX 8sJanad) (sA asuanaa) 2u0d = (SA SX JUOD) BSJDASJ, :DUOD 9SIIASJ BUWLD]

11 dwts (sx 32nput) Aq
. (Sz sA 2u0d) sx Ju0d = sz (SA SX 2U0D) DJUOD, :JOSSE DUOD BUWA]

118 dwts (sx 33nput) Aq
.SX = Kidw3 sx ouod, :A3dws duod euwwa]

. (A3dwg x bag) (sx @sJ49A8J) 2U0D = (SX X bag) asdansd, |
«A1dug = Ajdwg asuanau,

aJaym

.bes e, < bas e,, :: 8suen8s uny

. (A sx 2u0d) x bag = sA (sx x bas) suod, |
.SA = sA Aydw3 duod,

aJaym

D95 B, < bas e, « bas e,, i: 2JUu0D un}

Wbas e,, e, bag | Aidwg = bas e, adAiezep

utbaq
utey siJodut
bas Aioayl

<532Uanbas 93TUT4» UOTIIAS

(%
SnTJexey rJoyiny
Ay3bas/xa/10H 191ITL %)
.bas, malneld

o

pua

tppe 11e-dwts) (sx 32nput) Aq
9SJ3A3J,, 19SIINIITISJBASL BUWI|

(2U02™9S543A3l
uSX = (SX 3SJanad)

(o0sse™2uo0d Ajdwe™douod :ppe 11 dwTs) (SXx 3dNput) Ag

. (SX 8sJ43A3a) (SA 3suanad) 2u0d = (SA SX DU0D) 3SIDAIJ,, :DUOD ISUIAIJ BWWI|

&

112 dwrs (sx 3dnput) Aq

(52 SA JuU02) SX JuU0D = Sz (SA SX DJUO0D) DUO0D, :D0SSE DUOD BWWD]
118" dwTts (sx 3dnput) Aq

WSX = Aidw3 sx 2uo0d,, :A3dwd™ouod ewwa

#(£2dwg x bag) (sx asdaAad) duod = (sx x bag) asuanay,, |
WArdwg = Ardw3z asdanad,,

aJaym

.D3s e, = bas e,,, :: 3asuaaad uny

w(SA sx duod) x bag = sA (sx x bas) ouod,, |
wSA = sA Aydwg ouod,,

aJaym

.b3s e, = bas e, « bas e,,, :: 2u0d uni

Wbas e, e, bag | A1dwg = bas e, adAyeiep

utbaq

utel siJodut

bas Auoaya

<S32Uanbas 93TUTY> UOT1D3S

%
hs)l x Ayrbes

dde'/L0Z-Inr-LO 9||8qes| — Ayybag

	Introduction
	The Isabelle platform: formal document processing
	The Archive of Formal Proofs (AFP)

	Common modes of operation
	Editing: Prover IDE
	Building: batch-mode
	Browsing: client-server applications

	Technical approaches to scaling
	Skipped proofs in the Prover IDE
	Forked proofs in the Prover IDE
	Swapping of PIDE markup database: JVM heap vs. external database
	Distributed batch-builds
	Heap hierarchy compression: skipping intermediate sessions
	Headless PIDE server for external tool integration
	Isabelle Docker container
	Fork of ML processes instead of heap load/store/load cycles
	Direct transition from failed batch-build to IDE session
	Direct transition from finished IDE session to saved heap image
	Upgrade of PIDE edits and markup to Mercurial changesets with external database
	Lazy Isabelle context elements (locales)
	Distributed Poly/ML processes with virtual shared memory
	Reducing Poly/ML memory footprint on native 64bit

