Future Prospects of Isabelle Technology

Makarius Wenzel
http://sketis.net

November 2017

e Prover IDE (PIDE) for Interactive Theorem Proving

— lIsabelle/jEdit PIDE
— lsabelle/VSCode PIDE

e |sabelle document preparation

e Development environment for Isabelle/ML and SML

Abstract

In the past 3 decades, Isabelle has made a long way from a modest LCF-style
proof assistant (with copy-paste of proof scripts written in ML) to the current
Isabelle/PIDE editor-environment (with its timeless and stateless processing of
proof documents). In this presentation, | will try to extrapolate this into the future:
How far can we scale proof documents and libraries, e.g. via moving Isabelle into the
“cloud” ? How can we reduce system resource requirements on the client side? How
can we upgrade interactive edits produced by a single author, towards versioned
changesets by multiple or distributed authors? What are suitable frameworks for
the next generation of Isabelle document preparation? What can we make out of
Isabelle /ML as ultra-clean environment for functional programming? Etc. etc.

What is Isabelle?
Framework of domain-specific formal languages

Logic:
Isabelle/Pure: Logical framework and bootstrap environment
Isabelle/HOL: Theories and tools for applications

Programming:
Isabelle/ML: Tool implementation (Poly/ML)
Isabelle/Scala: System integration (JVM)

Proof:

Isabelle/lIsar: Intelligible semi-automated reasoning
Document language: IATEX type-setting of proof text

Prover IDE (PIDE) for
Interactive Theorem Proving

Prover TTY loop (=~ 1979)

0 -+ Terminal
File Edit View Terminal Tabs Help
Welcome to Isabelle/HOL (Isabelle2013: February 2013) °
> theory A imports Main begin

theory A

> lemma "X = x";

proof (prove): step ©

goal (1 subgoal):
1. x = x
> i

0 -+ Terminal
File Edit View Terminal Tabs Help
Welcome to Coq 8.4pl2 (September 2013)

Cogq < Lemma test: forall (A: Type) (x: A), x = x .
1 subgoal

forall (A : Type) (x : A), X = X

test < i (Wikipedia: K. Thompson and D. Ritchie at PDP-11)

e user drives prover, via manual copy-paste
e synchronous and sequential

Prover IDE (PIDE) for Interactive Theorem Proving

Proof General and clones (=~ 1999)

emacs: Group.thy

File Edit Apps Options Buffers Tools Pro

SEHE M

finally; show Pthesis;
ged;

text ix

With “namefgroup-right-inverse} already available,

“name fgroup-right-unitislabel {thm:group-right-unit} is now
established much easier.

*3 5

theorem group_right_unit: "x e one = ix:
proof -;
have "x e one = x ¢ (inv x » x]";
by (simp only: group_left_inverse);
also; have "... =3 e inv % e x*
by (simp only: group_assoc);
also; have "... = one & x";
by (simp only: group_right_inverse);
also; have "... = x";
by (simp only: group_left_unit);
finally; show 7thesis;
ged;

text £k
“medskip The calculational proof style above follows typical

presentations given in any introductory course on algebra. The basic

technigue is to form a transitive chain of eguations, which in turn

are established by simplifying with appropriate rules. The low-level

Tneical details nf ponatinnal reasnnine are 1eft imnlicit.

————— XEmacs: Group.thy {Isabelle/Isar script XS:isar Font Scriptin

Proof (prove): step &, depth 1

goal (have):

File Edit Navigation TryTactics Templates Queries

Display Compile Windows Help

EXFEwTLO .

[Eintro.v ‘eExamp\Es v|

rewrite IHn.
reflexivity.
Qed.

induction n.

destruct m as [[m].

left.

reflexivity.

right.

discriminate.
destruct m as [|m].

right; discriminate.
destruct (IHn m) as [Hm|Hm].
left.
rewrite Hm.
reflexivity.
right.
intros Hnm.
apply Hm.
injection Hnm.
tauto.
Defined.

Eval compute in (nat_eq dec 2 2).
Eval compute in (nat_eq_dec 2 1).

Lemma nat_eq_dec : forall (n m : nat),

% & iy % 8 x = one s %
1. % o inv x * x = one * x
Definition pred (n:nat) : option nat
match n with
| @ => None
i [|
————— %Emscs: *isasbelle—goalsk (Isabelle/Isar proofstate)-——-All |

2 subgoals
n : nat
“| [THn : forall m nat, {n = m} + {n <> m}
m : nat
Hm : n=m
(1/2)
Sm=5Sm
(2/2)

{Sn=S5Sm} + {Sn<5Snm}

|Ready in Predicate_Logic, proving nat_eq_dec

Line: 159 Char: 13 Coglde started

e user drives prover, via automated copy-paste and undo

e synchronous and sequential

Prover IDE (PIDE) for Interactive Theorem Proving

PIDE: Prover IDE (~ 2008)

Approach:

Prover supports asynchronous document model natively
Editor continuously sends source edits and receives markup reports
Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

Challenge: introducing genuine interaction into ITP
e many conceptual problems

e many technical problems

e many social problems

Prover IDE (PIDE) for Interactive Theorem Proving 6

Isabelle/jEdit PIDE

Isabelle/jEdit Prover IDE (October 2017)

[NN] & Seq.thy

. . 0 Seq.thy (SISABELLE_ROOT/src/HOL/ex/) E isabelle E
InteraCtlon section <Finite sequences: e % B

: L

. Seq.thy

() Cont| n uous e [theory Seq v sect::zo;;i:i:e sequences: =
. imports Main datatype a seq = Emty | Seq ‘a "'a st %
checking begin ICE———T—

lemma conc_empty: “conc xs Empty = xs”
lemma conc_assoc: “conc (conc xs ys) z

datatype 'a seq = Empty | Seq 'a "'a seq" Lema reverse_conc: * reversa {conc 35)
e parallel o
. o |fun conc :: "'a seq = 'a seq = 'a seq"l
processing i

"conc Empty ys = ys"

L || "conc (Seq x xs) ys = Seq x (conc xs ys)"
<

o |fun reverse constant "Seq.seq.Seq"
where 11 'a = 'aseq = 'a seq
"reverse tmpcy cmpcy

L || "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"

= |Lemma conc_empty: "conc xs Empty = xs"
L by (induct xs) simp_all

Proof state Auto update Update | Search: - 100% ?

constants
conc :: "'a seq = 'a seq = 'a seq"
Found termination order: "()p. size (fst p)) <*mlex*> {}"

B = OQutput

13,39 (200/789) (isabelle,isabelle,UTF-8-Isabelle) UG IR/ 495MB 4:46 PM

Isabelle/jEdit PIDE

Building blocks

jEdit: http://www.jedit.org

e sophisticated text editor implemented in Java

Scala: http://www.scala-lang.org

e higher-order functional-object-oriented programming on JVM
PIDE:

e general framework for Prover IDEs based on Scala

e with parallel and asynchronous document processing
Isabelle/jEdit:

e main example application of the PIDE framework
e default user-interface for Isabelle

e filthy rich client: requires 4-8 GB memory, 2—4 CPU cores

Isabelle/jEdit PIDE

http://www.jedit.org
http://www.scala-lang.org

Timeline

Parallel Isabelle

e 2005 “free lunch is over”: multicore invasion into consumer market

e 2006-2008 Isabelle + Poly/ML support multicore hardware
in batch mode

Isabelle/PIDE /jEdit

e 2008-2010: experimental Isabelle/jEdit Prover IDE
e October 2011: first release of Isabelle/jEdit 1.0
e October 2017: Isabelle/jEdit 9.0

Isabelle/VSCode

e Early 2017: experimental Isabelle/VSCode Prover IDE
e October 2017: first release Isabelle/VSCode 1.0

Isabelle/jEdit PIDE 10

Isabelle/VSCode PIDE

Building blocks

e Visual Studio Code editor platform:

— recent open-source project by Microsoft
“Code editing. Redefined. Free. Open Source. Runs everywhere.”
— based on Electron application framework
with Node.js, Chromium browser, V8 JavaScript engine
— IDE for TypeScript in TypeScript (typed JavaScript)
e Isabelle/Scala/PIDE: slightly reworked for multiple front-ends

e |sabelle extension: via VSCode marketplace

Isabelle/VSCode PIDE

12

Isabelle/VSCode: document-oriented interaction

["\ EXPLORER
4 OPEN EDITORS

Seq.thy — HOL

Seq.thy e State

%
»
5]
=]
m

) Auto update | Update | | Locate

LEFT
® = Seq.thy ex

section <Finite sequences>

proof (prove)

v T theory Seq ggalcéicsizggzli: Cxs
S £ State imports Main ' o
4 HOL :
= ML.thy begin
MonoidGroup.thy
cH Multiquote.thy datatype 'a seq = Empty | Seq 'a "'a seq"

NatSum.thy
Normalization_by_Evaluation.thy
Parallel_Example.thy
Peano_Axioms.thy

fun conc :: "'a seq = 'a seq = 'a seq"
where

PER.thy "'conc Empty ys = ys" 1
Perm_Fragments.thy | "conc (Seq x xs) ys = Seq x (conc xs ys)"
PresburgerEx.thy 1
Primrec.thy f o . m
un reverse :: a seq » 'a seq
FREEEEy constant "Seq.seq.Seq"
£ Quicksort.thy where
Records.thy "reverse Empty = Empty" :: 'a= 'a seq = 'a seq
ReiEE R A iy | "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"
Refute_Examples.thy
Rewrite_Examples.thy
SAT_Examples.thy lemma conc_empty: "conc xs Empty = xs"
Seq.thy by (induct xs)
Serbian.thy
Set_Comprehension_Pointfree_E... " "
ot Theomh lemma conc_assoc: "conc (conc xs ys) zs = conc xs (conc ys zs)
et_Theory.thy .
= Simproc_Tests.thy by (lndUCt XS,)V
Simps_Case_Conv_Examples.thy
SOS_Cert.thy lemma reverse_conc: '"reverse (conc xs ys) = conc (reverse ys) (reverse xs)"
Slekiliy by (induct xs) (simp_all add: conc_empty conc_assoc)
Sqrt_Script.thy
Saqrt.thy
= Sudoku.thy lemma reverse_reverse: "reverse (reverse xs) = xs"
Sum_of_Powers.thy by (induct xs) (simp_all add: reverse_conc)
Tarski.thy
£ Termination.thy
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL E—‘T‘ A x
ThreeDivides.thy
Transfer_Debug.thy £ Sea.thy ex
© Failed to finish proofa: goal (2 subgoals): 1. conc Empty Empty = Empty 2. Ax1 xs. conc xs Empty = xs => conc (Seq x1 xs) Empty = Seq x1 xs (24, 16)

£ Transfer_Ex.thy
£ Transfer_Int_Nat.thy

Transitive_Closure_Table_Ex.thy

o

Failed to finish proofa: goal (2 subgoals): 1. conc (conc Empty ys) zs = conc Empty (conc ys zs) 2. Ax1xs. conc (conc xs ys) zs = conc Xs (conc ys zs) = conc (conc (Seq x1 xs) ys) ... (27, 16)

Ln23,Col1 Spaces:2 UTF-8 LF

Isabelle/VSCode PIDE

Isabelle @

13

Isabelle/VSCode: document preview

= Seq.thy x
x)

section <Finite sequences>

theory Seq
imports Main
begin

datatype 'a seq = Empty | Seq 'a "'a seq"
fun conc :: "'a seq = 'a seq = 'a seq"
where

"conc Empty ys = ys"

| "conc (Seq x xs) ys = Seq x (conc xs ys)"

fun reverse :: "'
where

"reverse Empty = Empty"
| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"

a seq = 'a seq"

lemma conc_empty: '"conc xs Empty = xs"
by (induct xs) simp_all

lemma conc_assoc: '"conc (conc xs ys) zs =
by (induct xs) simp_all

lemma reverse_conc: “reverse (conc xs ys) =
by (induct xs) (simp_all add: conc_empty conc_assoc)

lemma reverse_reverse: "reverse (reverse xs) = xs
by (induct xs) (simp_all add: reverse_conc)

end

Isabelle/VSCode PIDE

Seq.thy — Isabelle_01-Jul-2017.app

&

conc xs (conc ys zs)"

R

0

conc (reverse ys) (reverse xs)"

m

Preview "Seq"

(* Title:
Author:

HOL/ex/Seq.thy
Makarius
*)

section <Finite sequences>

theory Seq
imports Main
begin

datatype 'a seq = Empty | Seq 'a "'a seq"

fun conc ::
where

"conc Empty ys = ys"
| "conc (Seq x xs) ys =

"'a seq = 'a seq = 'a seq"

Seq x (conc xs ys)"

fun reverse ::
where

"reverse Empty = Empty"
| "reverse (Seq x xs) = conc (reverse xs)

"'a seq = 'a seq"

(Seq x Empty)"

lemma conc_empty: "conc xs Empty = xs
by (induct xs) simp_all

lemma conc_assoc: "conc (conc Xs ys) zs =
by (induct xs) simp_all

conc xs (conc ys zs)"

lemma reverse_conc: "reverse (conc xs ys) = conc (reverse ys) (reverse xs)"

by (induct xs) (simp_all add: conc_empty conc_assoc)

lemma reverse_reverse: "reverse (reverse Xs) = Xs
by (induct xs) (simp_all add: reverse_conc)

end

Ln10, Col1 Spaces:2 UTF-8 LF Isabelle @

14

Spin-off: IDE Language Server Protocol

Website: http://langserver.org

Maintainer: Microsoft

Purpose: “language smartness” for many editors

e JSON-RPC

e protocol for completion, goto-definition, scope-highlighting, . . .
e front-ends: VSCode, Eclipse, Neovim, . ..

e back-ends: JavaScript, TypeScript, C#, Go, Java,
Isabelle/Isar, Isabelle/ML, . . .

Isabelle/VSCode PIDE

15

http://langserver.org

Potential of the VSCode/Electron platform

Technology
e High-quality HTML rendering within just one browser

e Perspective for viable multiplatform support
(without X11 on Linux)

e Generic GUI integration for:

— Debugger
— Version Control System (Git, Mercurial, . . .)

Ecosystem
e Project managed by developers at Microsoft

e Young and active community
e Many emerging projects and extensions

Isabelle/VSCode PIDE

16

Future prospects for PIDE

e frontend: high-quality HTML presentation
(e.g. via VSCode)

e backend: headless PIDE for “cloud”
(e.g. via SSH or WebSocket)

e separation of edits/markup protocol vs. display protocol
(e.g. for web client)

e PIDE edits vs. Mercurial changesets:

— multi-version editing
— semantic annotations for changesets

e full-scale library editing / browsing
(e.g. with PostgreSQL database server for PIDE markup)

Isabelle/VSCode PIDE

17

Isabelle document preparation

Document structure

Markup
e section headings (6 levels like in HTML):
chapter, section, subsection, . . . , subparagraph

e text blocks: text, txt, text_raw
o free-form IATEX macros (rare)

Markdown

e implicit paragraphs and lists: itemize, enumerate, description

Isabelle document preparation

19

Document antiquotations

full form: @{name [options| arguments ...}

short form:
1. cartouche argument: \<“name>(arqgument)

2. no argument: \<"name>
3. standard name: (argument)

Notable examples:

e cartouche, theory_text: self-presentation of Isar

e bold, emph, verbatim, footnote: text styles (with proper nesting)
e noindent, smallskip, medskip, bigskip: spacing

e cite: formal BibTEX items

e path, file, dir, url, doc: system resources

Isabelle document preparation 20

HTML output

Status quo:

e static HTML with minimal CSS

e imitation of Isabelle/jEdit syntax highlighting

e limited semantic markup via Isabelle/jEdit isabelle.preview

Future prospects:

e support for document markup / markdown structure
e support for document antiquotations

e high-quality HTML / CSS rendering

e ATEX-math quality via MathJax

e interactive HTML presentation (e.g. reveal. js)

Isabelle document preparation 21

KTEX output

Status quo:

e IATEX sources and pdflatex runs via isabelle build
e pretty-printing of Isabelle symbols and tokens

Future prospects:

e pdflatex runs within PIDE
e IATEX errors and warnings with source positions
e use of semantic markup for document output

Isabelle document preparation

22

Development environment for
Isabelle/ML and SML

The glorious past of SML

Website:
e http://sml-family.org
e http://sml-family.org/history

Classic documents:
e The Definition of Standard ML (SML'90)
https://github.com /SMLFamily/The-Definition-of-Standard-ML

e The Definition of Standard ML, revised (SML'97)
https://github.com /SMLFamily/The-Definition-of-Standard-ML-Revised

Best-known implementations:

SML/NJ http://www.smlnj.org
MLton http://www.mlton.org
Moscow ML http://mosml.org

Development environment for Isabelle/ML and SML 24

http://sml-family.org
http://sml-family.org/history
https://github.com/SMLFamily/The-Definition-of-Standard-ML
https://github.com/SMLFamily/The-Definition-of-Standard-ML-Revised
http://www.smlnj.org
http://www.mlton.org
http://mosml.org

Poly/ML (since 1985, David Matthews)

e SML'97 with basis library

e interrupts from SML'90

e fast compiler that produces fast machine code (x86, x86_64)
e incremental runtime compilation (“eval™)

e runtime heap compaction (substructure sharing)

e dumped heap images and loadable modules

e linkable object files

foreign language interface (1ibffi)
multicore support (threads and locks)
parallel garbage collection
source-level debugger

IDE support

Development environment for Isabelle/ML and SML

25

Isabelle /ML

based on Poly/ML (exclusively)

embrace-and-extend version of SML'90 + SML'97
advanced Isabelle/ML library (not SML'97 basis library)
parallel evaluation with futures, promises, lazy values
immutable data managed within logical context
compilation within logical context

statically checked antiquotations

rational numbers with literals

mathematical symbols

PIDE support: static phase, dynamic phase, debugger
self-application: Isabelle/Pure can load itself within PIDE

Development environment for Isabelle/ML and SML

26

Isabelle/ML: IDE

[] [] &| Examples.thy, factorial.sml
IE3E & 9¢ {00 @ o030 B @& © |€»
O Examples.thy (S$ISABELLE_ROOT/src/Tools /SML/) E

The Isabelle/Isar command i:«<SML_file> supports official Standard ML within
the Isabelle environment, with full support in the Prover IDE
(Isabelle/jEdit).

Here is a very basic example that defines the factorial function and
evaluates it for some arguments.

SHL_file [factorial.sml"

O factorial.sml (SISABELLE_ROOT/src/Tools /SML/} E

[jun factorial @ = 1

| factorial n = n * (n - 1);

_ 5 B
factorial 10; ML: int -> int
factorial 100;
factorial 1000;
Proof state [Auto update Update = Search: v 75% B
val factorial = fn: int -> int
val it = 3628800: int
val it =
9332621544359441526816992388562667004907 1596826438162146859296389521759999322991 5608941 46357615651828625369
int
val it =
4023872600770937735437024339230039857193748642107 1463254379991 042993851 23986290205520442084865694048004799
int

B ~ OQOutput
1,1(0/107)

= Examples

src/Tools/SML/Examples.thy cU
|| Release notes i
|l Tutorials g
|| Reference Manuals E
| 7 0Old Manuals B
| Original jEdit Documentation E'
|| Haskabelle

src/HOL ex/Seq.thy o
src/HOLfex/ML.thy
src/HOL/Unix/Unix.thy
src/HOL/Isar_Examples/Drink

4

(sml,none,UTF-8-lIsabelle)

UG IEEEN495MB 4:36 PM

Development environment for Isabelle/ML and SML

Isabelle/ML: debugger

[JoN] + Scratch.thy (medified)
DEd»E & 9¢ DA B T EEE BX & @ |€»
M Scratch.thy (~/)

declare [[ML_debugger = true]l

ML <
fun factorial n =
if n =0 thensl
else * factorial (n - 1)
>

T ML <factorial 10»

Break Continue Step Step over Step out Context: v ML:

Eval SML Search:

[Threads .« val factorial = fn: int -> int

v ‘:'worgecrt‘;iil . val n = 3: int
factorial
factorial
factorial
factorial
factorial
factorial
factorial
factorial
factorial
factorial
7

B~ Debugger

15,10 (126/168) (isabelle,isabelle,UTF-8-Isabelle)

Development environment for Isabelle/ML and SML

UG B6/495MB 7:28 PM

28

Future prospects for ML

e Stop using ML on the command-line!
e Update teaching materials and textbooks for Isabelle/ML IDE
e Update examples for idiomatic Isabelle/ML:

— stateless programming via context data

— pretty printing with IDE layout and markup

— proper mathematical symbols instead of ASCII art (or Unicode)
— embedded languages via nested cartouches

— reuse library to implement your own theorem prover

Isabelle footprint:

e download size: 165-195 MB

e disk space (without HOL): 520 MB
e disk space (with HOL): 750 MB

Development environment for Isabelle/ML and SML 29

