
Future Prospects of Isabelle Technology

Makarius Wenzel
http://sketis.net

November 2017

λ
→

∀
=Is

ab
el
le

β

α

• Prover IDE (PIDE) for Interactive Theorem Proving

– Isabelle/jEdit PIDE

– Isabelle/VSCode PIDE

• Isabelle document preparation

• Development environment for Isabelle/ML and SML



Abstract

In the past 3 decades, Isabelle has made a long way from a modest LCF-style

proof assistant (with copy-paste of proof scripts written in ML) to the current

Isabelle/PIDE editor-environment (with its timeless and stateless processing of

proof documents). In this presentation, I will try to extrapolate this into the future:

How far can we scale proof documents and libraries, e.g. via moving Isabelle into the

“cloud”? How can we reduce system resource requirements on the client side? How

can we upgrade interactive edits produced by a single author, towards versioned

changesets by multiple or distributed authors? What are suitable frameworks for

the next generation of Isabelle document preparation? What can we make out of

Isabelle/ML as ultra-clean environment for functional programming? Etc. etc.

1



What is Isabelle?
Framework of domain-specific formal languages

Logic:

Isabelle/Pure: Logical framework and bootstrap environment

Isabelle/HOL: Theories and tools for applications

Programming:

Isabelle/ML: Tool implementation (Poly/ML)

Isabelle/Scala: System integration (JVM)

Proof:

Isabelle/Isar: Intelligible semi-automated reasoning

Document language: LATEX type-setting of proof text

2



Prover IDE (PIDE) for
Interactive Theorem Proving



Prover TTY loop (≈ 1979)

(Wikipedia: K. Thompson and D. Ritchie at PDP-11)

• user drives prover, via manual copy-paste

• synchronous and sequential

Prover IDE (PIDE) for Interactive Theorem Proving 4



Proof General and clones (≈ 1999)

• user drives prover, via automated copy-paste and undo

• synchronous and sequential

Prover IDE (PIDE) for Interactive Theorem Proving 5



PIDE: Prover IDE (≈ 2008)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports

Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

Challenge: introducing genuine interaction into ITP

• many conceptual problems

• many technical problems

• many social problems

Prover IDE (PIDE) for Interactive Theorem Proving 6



Isabelle/jEdit PIDE



Isabelle/jEdit Prover IDE (October 2017)

• asynchronous

interaction

• continuous

checking

• parallel

processing

Isabelle/jEdit PIDE 8



Building blocks

jEdit: http://www.jedit.org

• sophisticated text editor implemented in Java

Scala: http://www.scala-lang.org

• higher-order functional-object-oriented programming on JVM

PIDE:

• general framework for Prover IDEs based on Scala

• with parallel and asynchronous document processing

Isabelle/jEdit:

• main example application of the PIDE framework

• default user-interface for Isabelle

• filthy rich client: requires 4–8 GB memory, 2–4 CPU cores

Isabelle/jEdit PIDE 9

http://www.jedit.org
http://www.scala-lang.org


Timeline

Parallel Isabelle

• 2005 “free lunch is over”: multicore invasion into consumer market

• 2006–2008 Isabelle + Poly/ML support multicore hardware
in batch mode

Isabelle/PIDE/jEdit

• 2008–2010: experimental Isabelle/jEdit Prover IDE

• October 2011: first release of Isabelle/jEdit 1.0

• October 2017: Isabelle/jEdit 9.0

Isabelle/VSCode

• Early 2017: experimental Isabelle/VSCode Prover IDE

• October 2017: first release Isabelle/VSCode 1.0

Isabelle/jEdit PIDE 10



Isabelle/VSCode PIDE



Building blocks

• Visual Studio Code editor platform:

– recent open-source project by Microsoft
“Code editing. Redefined. Free. Open Source. Runs everywhere.”

– based on Electron application framework
with Node.js, Chromium browser, V8 JavaScript engine

– IDE for TypeScript in TypeScript (typed JavaScript)

• Isabelle/Scala/PIDE: slightly reworked for multiple front-ends

• Isabelle extension: via VSCode marketplace

Isabelle/VSCode PIDE 12



Isabelle/VSCode: document-oriented interaction

Isabelle/VSCode PIDE 13



Isabelle/VSCode: document preview

Isabelle/VSCode PIDE 14



Spin-off: IDE Language Server Protocol

Website: http://langserver.org

Maintainer: Microsoft

Purpose: “language smartness” for many editors

• JSON-RPC

• protocol for completion, goto-definition, scope-highlighting, . . .

• front-ends: VSCode, Eclipse, Neovim, . . .

• back-ends: JavaScript, TypeScript, C#, Go, Java,
Isabelle/Isar, Isabelle/ML, . . .

Isabelle/VSCode PIDE 15

http://langserver.org


Potential of the VSCode/Electron platform

Technology

• High-quality HTML rendering within just one browser

• Perspective for viable multiplatform support
(without X11 on Linux)

• Generic GUI integration for:

– Debugger
– Version Control System (Git, Mercurial, . . . )

Ecosystem

• Project managed by developers at Microsoft

• Young and active community

• Many emerging projects and extensions

Isabelle/VSCode PIDE 16



Future prospects for PIDE

• frontend: high-quality HTML presentation
(e.g. via VSCode)

• backend: headless PIDE for “cloud”
(e.g. via SSH or WebSocket)

• separation of edits/markup protocol vs. display protocol
(e.g. for web client)

• PIDE edits vs. Mercurial changesets:

– multi-version editing
– semantic annotations for changesets

• full-scale library editing / browsing
(e.g. with PostgreSQL database server for PIDE markup)

Isabelle/VSCode PIDE 17



Isabelle document preparation



Document structure

Markup

• section headings (6 levels like in HTML):
chapter, section, subsection, . . . , subparagraph

• text blocks: text, txt, text raw

• free-form LATEX macros (rare)

Markdown

• implicit paragraphs and lists: itemize, enumerate, description

Isabelle document preparation 19



Document antiquotations

full form: @{name [options] arguments . . .}

short form:

1. cartouche argument: \<^name>〈argument 〉

2. no argument: \<^name>
3. standard name: 〈argument 〉

Notable examples:

• cartouche, theory text : self-presentation of Isar

• bold, emph, verbatim, footnote: text styles (with proper nesting)

• noindent, smallskip, medskip, bigskip: spacing

• cite: formal BibTEX items

• path, file, dir, url, doc: system resources

Isabelle document preparation 20



HTML output

Status quo:

• static HTML with minimal CSS

• imitation of Isabelle/jEdit syntax highlighting

• limited semantic markup via Isabelle/jEdit isabelle.preview

Future prospects:

• support for document markup / markdown structure

• support for document antiquotations

• high-quality HTML / CSS rendering

• LATEX-math quality via MathJax

• interactive HTML presentation (e.g. reveal.js)

Isabelle document preparation 21



LATEX output

Status quo:

• LATEX sources and pdflatex runs via isabelle build

• pretty-printing of Isabelle symbols and tokens

Future prospects:

• pdflatex runs within PIDE

• LATEX errors and warnings with source positions

• use of semantic markup for document output

Isabelle document preparation 22



Development environment for
Isabelle/ML and SML



The glorious past of SML

Website:

• http://sml-family.org

• http://sml-family.org/history

Classic documents:

• The Definition of Standard ML (SML’90)
https://github.com/SMLFamily/The-Definition-of-Standard-ML

• The Definition of Standard ML, revised (SML’97)
https://github.com/SMLFamily/The-Definition-of-Standard-ML-Revised

Best-known implementations:

SML/NJ http://www.smlnj.org

MLton http://www.mlton.org

Moscow ML http://mosml.org

Development environment for Isabelle/ML and SML 24

http://sml-family.org
http://sml-family.org/history
https://github.com/SMLFamily/The-Definition-of-Standard-ML
https://github.com/SMLFamily/The-Definition-of-Standard-ML-Revised
http://www.smlnj.org
http://www.mlton.org
http://mosml.org


Poly/ML (since 1985, David Matthews)

• SML’97 with basis library

• interrupts from SML’90

• fast compiler that produces fast machine code (x86, x86_64)

• incremental runtime compilation (“eval”)

• runtime heap compaction (substructure sharing)

• dumped heap images and loadable modules

• linkable object files

• foreign language interface (libffi)

• multicore support (threads and locks)

• parallel garbage collection

• source-level debugger

• IDE support

Development environment for Isabelle/ML and SML 25



Isabelle/ML

• based on Poly/ML (exclusively)

• embrace-and-extend version of SML’90 + SML’97

• advanced Isabelle/ML library (not SML’97 basis library)

• parallel evaluation with futures, promises, lazy values

• immutable data managed within logical context

• compilation within logical context

• statically checked antiquotations

• rational numbers with literals

• mathematical symbols

• PIDE support: static phase, dynamic phase, debugger

• self-application: Isabelle/Pure can load itself within PIDE

Development environment for Isabelle/ML and SML 26



Isabelle/ML: IDE

Development environment for Isabelle/ML and SML 27



Isabelle/ML: debugger

Development environment for Isabelle/ML and SML 28



Future prospects for ML

• Stop using ML on the command-line!

• Update teaching materials and textbooks for Isabelle/ML IDE

• Update examples for idiomatic Isabelle/ML:

– stateless programming via context data
– pretty printing with IDE layout and markup
– proper mathematical symbols instead of ASCII art (or Unicode)
– embedded languages via nested cartouches
– reuse library to implement your own theorem prover

Isabelle footprint:

• download size: 165–195 MB

• disk space (without HOL): 520 MB

• disk space (with HOL): 750 MB

Development environment for Isabelle/ML and SML 29


