
The Isabelle Prover IDE (PIDE)
after 9 years of development,

and beyond

Makarius Wenzel
http://sketis.net

July 2017

λ
→

∀
=Is

ab
el
le

β

α

PIDE



Abstract

The main ideas around Isabelle/PIDE go back to summer 2008. This is an overview

of what has been achieved in the past 9 years, with some prospects for the future.

Where can we go from here as Isabelle community? (E.g. towards alternative

front-ends like Visual Studio Code; remote prover sessions ”in the cloud”; support

for collaborative editing of large formal libraries.) Where can we go as greater ITP

community (Lean, Coq, HOL family)?

1



History of Prover Interaction



TTY loop (≈ 1979)

(Wikipedia: K. Thompson and D. Ritchie at PDP-11)

• user drives prover, via manual copy-paste

• synchronous and sequential

History of Prover Interaction 3



Proof General and clones (≈ 1999)

• user drives prover, via automated copy-paste and undo

• synchronous and sequential

History of Prover Interaction 4



CoqIDE (≈ 2016)

• more formal interaction protocol

• recent support for asynchronous proofs

History of Prover Interaction 5



PIDE: Prover IDE (≈ 2008)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports

Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

History of Prover Interaction 6



PIDE: Prover IDE (≈ 2008)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports

Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

Challenge: introducing genuine interaction into ITP

• many conceptual problems

• many technical problems

• many social problems

History of Prover Interaction 6



Isabelle/jEdit Prover IDE (≈ 2016)

• asynchronous

interaction

• continuous

checking

• parallel

processing

History of Prover Interaction 7



Isabelle/jEdit: tool integration

Sledgehammer:

• integration with automated reasoning tools

• heavy external ATPs / SMTs for proof search

• light internal ATP (Metis) for proof reconstruction

History of Prover Interaction 8



Isabelle/jEdit: automatically tried tools

History of Prover Interaction 9



PIDE architecture



The connectivity problem

private
protocolAPI API

S
ca
la

M
L

ML threads

ML futures

POSIX processesPOSIX processes

Java threads

Scala futures

TCP/IP servers

Prover: MLEditor: Scala

JVM bridge

Design principles:

• private protocol for prover connectivity
(asynchronous interaction, parallel evaluation)

• public Scala API
(timeless, stateless, static typing)

PIDE architecture 11



PIDE protocol functions

Editor Prover

commands

messages

• type protocol command = name → input → unit

• type protocol message = name → output → unit

• outermost state of protocol handlers on each side (pure values)

• asynchronous streaming in each direction

−→ editor and prover as stream-procession functions

PIDE architecture 12



Approximative rendering of document snapshots

Editor Prover

edits

markup

p
ro
ce
ss
in
g

a
p
p
ro
x
im

a
ti
o
n

Δt

1. editor knows text T , markup M , and edits ∆T (produced by user)

2. apply edits: T ′ = T + ∆T (immediately in editor)

3. formal processing of T ′: ∆M after time ∆t (eventually in prover)

4. temporary approximation (immediately in editor):
M̃ = revert ∆T ; retrieve M ; convert ∆T

5. convergence after time ∆t (eventually in editor):
M ′ = M + ∆M

PIDE architecture 13



Isabelle/jEdit



Building blocks

jEdit: http://www.jedit.org

• sophisticated text editor implemented in Java

Scala: http://www.scala-lang.org

• higher-order functional-object-oriented programming on JVM

PIDE:

• general framework for Prover IDEs based on Scala

• with parallel and asynchronous document processing

Isabelle/jEdit:

• main example application of the PIDE framework

• default user-interface for Isabelle

• filthy rich client: requires 4–8 GB memory, 2–4 CPU cores

Isabelle/jEdit 15

http://www.jedit.org
http://www.scala-lang.org


Timeline

Parallel Isabelle

• 2005 “free lunch is over”: multicore invasion into consumer market

• 2006–2008 Isabelle + Poly/ML support multicore hardware
in batch mode

Isabelle/PIDE/jEdit

• 2008–2010: experimental Isabelle/jEdit Prover IDE

• October 2011: stable release of Isabelle/jEdit 1.0

• December 2016: Isabelle/jEdit 8.0

• October 2017 (?): Isabelle/jEdit 9.0

Isabelle/VSCode

• Early 2017: experimental Isabelle/VSCode Prover IDE

• October 2017 (?): experimental Isabelle/VSCode 1.0.0

Isabelle/jEdit 16



Isabelle/VSCode



Building blocks

• VSCode editor platform:

– recent open-source project by Microsoft
“Code editing. Redefined. Free. Open Source. Runs everywhere.”

– based on Electron application framework
with Node.js, Chromium browser, V8 JavaScript engine

– IDE for TypeScript in TypeScript (typed JavaScript)

• Isabelle/Scala/PIDE: slightly reworked for multiple front-ends

• Isabelle extension: via VSCode marketplace

Isabelle/VSCode 18



Isabelle/VSCode: document-oriented interaction

Isabelle/VSCode 19



Isabelle/VSCode: document preview

Isabelle/VSCode 20



Other VSCode prover projects

VSCoq: Coq Support for Visual Studio Code

• by C. J. Bell (MIT), see https://github.com/siegebell/vscoq

• uses Asynchronous Proofs from Coq/Paral-ITP project

• uses Coq XML protocol

• provides some HTML GUI components

Lean for VSCode

• by J. Roesch (Univ. Washington) and others,
see https://github.com/leanprover/vscode-lean

• uses Lean server for incremental compilation and checking

• already used in practice

Isabelle/VSCode 21

https://github.com/siegebell/vscoq
https://github.com/leanprover/vscode-lean


Potential of the VSCode/Electron platform

Technology

• High-quality HTML rendering within just one browser

• Perspective for viable multiplatform support (beyond Linux/X11)

• Generic GUI integration for:

– Debugger
– Version Control System (Git, Mercurial, . . . )

Ecosystem

• Project managed by developers at Microsoft

• Young and active community

• Many emerging projects and extensions

Isabelle/VSCode 22



Future Work



Future Work

Scaling

• editing big libraries as a whole,
notably The Archive of Formal Proofs

• offline PIDE markup in database files (e.g. SQLite)

• online PIDE markup in database server (e.g. PostgreSQL)

• integration with Version Control (e.g. Mercurial within VSCode)

Publishing

• backend: headless PIDE for “cloud” (e.g. via SSH or WebSocket)

• frontend: high-quality HTML presentation (e.g. via VSCode)

• advanced of formal publishing: LATEX and HTML / CSS / MathJax

• PIDE as webserver / cloud service?

Future Work 24


