The Isabelle Prover IDE (PIDE)
after 9 years of development,
and beyond

Makarius Wenzel
http://sketis.net

July 2017

Abstract

The main ideas around Isabelle/PIDE go back to summer 2008. This is an overview
of what has been achieved in the past 9 years, with some prospects for the future.
Where can we go from here as Isabelle community? (E.g. towards alternative
front-ends like Visual Studio Code; remote prover sessions "in the cloud”; support
for collaborative editing of large formal libraries.) Where can we go as greater ITP
community (Lean, Coq, HOL family)?

History of Prover Interaction

TTY loop (= 1979)

0 -+ Terminal v
File Edit View Terminal Tabs Help
Welcome to Isabelle/HOL (Isabelle2013: February 2013) °
> theory A imports Main begin

theory A

> lemma "X = x";

proof (prove): step ©

goal (1 subgoal):
1. x = x
> i

0 -+ Terminal
File Edit View Terminal Tabs Help
Welcome to Coq 8.4pl2 (September 2013) :

Cogq < Lemma test: forall (A: Type) (x: A), x = x .
1 subgoal

forall (A : Type) (x : A), X = X

test < I

(W

ikipedia: K. Thompson and D. Ritchie at PDP-11)

e user drives prover, via manual copy-paste

e synchronous and sequential

History of Prover Interaction

Proof General and clones (=~ 1999)

emacs: Group.thy

File Edit Apps Options Buffers Tools Pro

o X
Help

DEEH Y o

finally; show Pthesis;
ged;

text ix

With “namefgroup-right-inverse} already available,

“name fgroup-right-unitislabel {thm:group-right-unit} is now
established much easier.

*3 5

theorem group_right_unit:
proof -;
have "x e one =
by (simp only
also; have " =
by (simp
also; have
by (simp
also; have = x";
by (simp only: group_left_unit);
finally; show 7thesis;
ged;

"x e oone = (x:

x o (inv x e x)";
group_left_inverse);
.= o e dny % e "
only: group_assoc) ;
... = gne e xU3
only: group_right_inverse);
Poos = %R

text £k

“medskip The calculational proof style above follows typical
presentations given in any introductory course on algebra. The basic
technigue is to form a transitive chain of eguations, which in turn
are established by simplifying with appropriate rules. The low-lewel
Tneical details nf eonatinnal reasonine are 1eft imnlicitf.

macs: Group.thy (IsabellesIsar script XS:isar Font Scriptin

a
)--—-29%|

Proof (prove): step &, depth 1

goal (have):
% & iny x e %

= one s x
1. % o inv x e

o
X = one e x

File Edit Navigation TryTactics Templates Queries

Display Compile Windows

Help

EXFEwTLO .

[Eintro.v ‘eExamp\Es v|

rewrite IHn.
reflexivity.
Qed.

Lemma nat_eq_dec :
induction n.
destruct m as [[m].

left.

reflexivity.

right.

discriminate.
destruct m as [|m].

right; discriminate.
destruct (IHn m) as [Hm|Hm].
left.
rewrite Hm.
reflexivity.
right.
intros Hnm.
apply Hm.
injection Hnm.
tauto.
Defined.

forall (nm :

Eval compute in
Eval compute in

(nat_eq_dec 2 2).
(nat_eq_dec 2 1).
Definition pred (n:nat) :
match n with
| @ => None

option nat

nat) ,

{n

m} +

2 subgoals

n : nat

IHn : forall m
m : nat

Hm : n=m

nat, {n = m} + {n <> m}

(1/2)

Sm=5Sm

(2/2)

{Sn-=

Sm} + {Sn< Sn}

————— XEmacs: *isabelle-goalsk (Isabelle/Isar proofstate)——-All

|Ready in Predicate_Logic, proving nat_eq_dec

Line: 159 Char: 13 Coglde started

e user drives prover, via automated copy-paste and undo

e synchronous and sequential

History of Prover Interaction

CoqIDE (=~ 2016)

File Edit View Mavigation Try Tactics Templates Guerles Tools Compile ‘Windows Help
O % # ¢4 JF ¥ &0 « » [

@~Arithy @Arith_basew | @Peanollaly

FEVErL M; LOUUCLLON N UESLIUCL W; SLMpL; FEWrlle fLAn; SPIii;

duLu; edsy. 2 subgoals
Qed n : nat
IHn : forallm : nat, (n ?=m) <> GE <->n<=m

Lemma compare 1t iff nm : (n ?=m) = Lt <-> n < m. m : nat ()

Pt b H:n<=m

revert m; induction n; destruct m; simpl; rewrite ?IHn; split; try easy. (1/2)
- intros _. apply Peano.le n_S, Peano.le @ n. Sn<=sm

- apply Peano.le_n_S. (2/2)
- apply Peano.le S n. ne=m

Qed.

Lemma compare_le iff nm : (n ?=m) <> Gt <-> n <=m.

P .

revert m; induction n; destruct m; simpl; rewrite ?IHn. |

- now split.

- split; intros. apply Peano.le_@_n. easy.

- split. now destruct 1. inversion 1.

- split; intros.| now apply Peano.le_n_S. now apply Peano.le_S_n.

Qed.

Lemma compare_antisym nm : (m ?= n) = CompOpp (n ?= m).

Proof.

revert m; induction n; destruct m; simpl; trivial.
Qed.
Lemma compare_succ nm : (Sn ?=5m) = (n ?=m). Messages || | Errors t] Jobs lﬂ
Proof.

reflexivity.

ed.

(* BUG: Ajout d'un cas * aprés preuve finie (deuxiéme niveau +++¥** z
* ---> Anomaly: Uncaught exception Proofview.IndexOutOfRange(_). Please report. *

(** ** Minimum, maximum *)

Lemma max_1 : forallnm, m<=n -> max nm = n.
Proof.

exact Peano.max_1.
ed.

Lemma max_r : forallnm, n<=m -> max n m = m.
Proof.
exact Peano.max_r.

Qed.

Ready in MNat, proving compare_le_iff

|
Line: 211 Char: 18 Cog s ready

e more formal interaction protocol
e recent support for asynchronous proofs

History of Prover Interaction

n/o

PIDE: Prover IDE (~ 2008)

Approach:

Prover supports asynchronous document model natively
Editor continuously sends source edits and receives markup reports
Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

History of Prover Interaction 6

PIDE: Prover IDE (~ 2008)

Approach:

Prover supports asynchronous document model natively
Editor continuously sends source edits and receives markup reports
Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

Challenge: introducing genuine interaction into ITP
e many conceptual problems

e many technical problems

e many social problems

History of Prover Interaction 6

Isabelle/jEdit Prover IDE (=~ 2016)

[NN] & Seq.thy
. . O Seq.thy ($ISABELLE_ROOT/src/HOL/ex/} E isabelle E
Intera Ctlon section <Finite sequences: e %
: L
. Seq.thy
® CON tl nuous e [|theory Seq v sect.tiﬁzo;—;i:i:e sequences»
. imports Main datatype a seq = Emty | Seq ‘a "'a st
checking begin ST
lemma conc_empty: “conc xs Empty = xs”
lemma conc_assoc: "conc (conc xs ys) z¢
datatype 'a seq = Empty | Seq 'a "'a seq" Lema reverse_conc: * reversa {conc 35)
o p ara I IeI Lama reverse_reverse: "reverse (revers
. o |fun conc "'a seq = 'a seq = ‘'a seq"l
proceSS|ng where

B = OQutput
13,39 (200/789)

History of Prover Interaction

constants

Found termination order:

"conc Empty ys = ys"
| "conc (Seq x xs) ys
<
fun reverse constant "Seq.seq.Seq"
where ita =

"reverse tmpcy cmpcy
| “reverse (Seq x xs)

Seq x (conc xs ys)"

a seq = 'a seq

conc (reverse xs) (Seq x Empty)"

lemma conc_empty: "conc xs Empty = xs"
by (induct xs) simp_all

Proof state Auto update Update | Search: 100% +

conc "'a seq = 'a seq = 'a seq"

"(Ap. size (fst p)) <*mlex*> {}"

(isabelle,isabelle,UTF-8-Isabelle)

UG IR/ 495MB 4:46 PM

PBRPIS

4

Isabelle/jEdit: tool integration

Sledgehammer:

e integration with automated reasoning tools
e heavy external ATPs / SMTs for proof search
e light internal ATP (Metis) for proof reconstruction

® [] Scraich.thy (modified)

I@dE & 9 XDE B 330 X & 0 e

| B Scratch.thy (~/)

o |theory Scratch
l imports Main
begin

lemma "[x] = [y] = x = y"lby (metis list.inject)

Provers: | cvcd remote_vampire z3 spass e ¥ | [Isar proefs [_] Try methods | Apply | | Cancel | | Locate | |100% £d

"cvc4": Try this: by (metis list.inject) (14 ms).

"z3": Try this: by (metis list.inject) (18 ms).

"spass": Try this: by (metis list.inject) (18 ms).

"e": Try this: by (metis the_elem_set) (14 ms).
"remote_vampire": Try this: by (metis list.inject) (16 ms).

B - | Sledgehammer |

5.26 (60/83) (isabelle,isabelle UTF-8-1sabelle) UG REEFER IMB 12:14 AM

History of Prover Interaction

Isabelle/jEdit: automatically tried tools

[] [] & Scratch.thy
I@B3E:& 9¢ XD @ TR B & @ |€»
O Scratch.thy (~/) a

e |theory Scratch
l imports Main

begin

datatype 'a tree = Tip | Tree 'a "'a tree" "'a tree"
o |fun tree_of_list :: "'a list = 'a tree"

where

"tree_of_list [] = Tip"
L || "tree_of_list (x # xs) = Tree x Tip (tree_of_list xs)"

o |fun list_of_tree :: "'a tree = 'a list"
where
"list_of_tree Tip = []"
L || "list_of_tree (Tree x t1 t2) = x # list_of_tree t1 @ list_of_tree t2"

e [Lemma "list_of_tree (tree_of_list xs) = xs"
[by (induct xs) simp_all

o@|lemma "tree_of_list (list_of_tree t) = t"l
U ==

= Auto Quickcheck found a counterexample:
[t = Tree a; (Tree a; Tip Tip) Tip
o Ewvaluated terms:
tree_of_list (list_of_tree t) =
Tree a; Tip (Tree a; Tip Tip)

20,42 (476/477) (isabelle,isabelle,UTF-8-Isabelle) UG I/ 495MB 4:28 PM

History of Prover Interaction

PIDE architecture

The connectivity problem

Editor: Scala

TCP/IP servers

Java threads

Scala futures

POSIX processes API

Prover: ML

«—F

Scala

JVM bridge

private
protocol

S

ML

API POSIX processes

+—
ML threads

Design principles:

ML futures

e private protocol for prover connectivity
(asynchronous interaction, parallel evaluation)

e public Scala API

(timeless, stateless, static typing)

PIDE architecture

11

PIDE protocol functions

commands

I— N

Editor Prover

messages

€

e type protocol_command = name — nput — unit
e type protocol_message = name — output — unit
e outermost state of protocol handlers on each side (pure values)
e asynchronous streaming in each direction
—— editor and prover as stream-procession functions

PIDE architecture

Approximative rendering of document snapshots

edits
_—%.

D
£
(]
@ 8 Prover
o

markup
]

Editor

approximation

editor knows text T', markup M, and edits AT (produced by user)
apply edits: 7" =T + AT (immediately in editor)
formal processing of T": AM after time At (eventually in prover)

= w -

temporary approximation (immediately in editor):
M = revert AT retrieve M ; convert AT

5. convergence after time At (eventually in editor):
M =M+ AM

PIDE architecture 13

Isabelle/jEdit

Building blocks

jEdit: http://www.jedit.org

e sophisticated text editor implemented in Java

Scala: http://www.scala-lang.org

e higher-order functional-object-oriented programming on JVM
PIDE:

e general framework for Prover IDEs based on Scala

e with parallel and asynchronous document processing
Isabelle/jEdit:

e main example application of the PIDE framework
e default user-interface for Isabelle

e filthy rich client: requires 4-8 GB memory, 2—4 CPU cores

lsabelle/jEdit

15

http://www.jedit.org
http://www.scala-lang.org

Timeline

Parallel Isabelle

e 2005 “free lunch is over”: multicore invasion into consumer market

e 20062008 Isabelle + Poly/ML support multicore hardware
in batch mode

Isabelle/PIDE /jEdit

e 2008-2010: experimental Isabelle/jEdit Prover IDE
e October 2011: stable release of Isabelle/jEdit 1.0
e December 2016: Isabelle/jEdit 8.0

e October 2017 (?): Isabelle/jEdit 9.0

Isabelle/VSCode

e Early 2017: experimental Isabelle/VVSCode Prover IDE
e October 2017 (?): experimental Isabelle/VSCode 1.0.0

Isabelle/jEdit 16

Isabelle/VSCode

Building blocks

e VSCode editor platform:

— recent open-source project by Microsoft
“Code editing. Redefined. Free. Open Source. Runs everywhere.”
— based on Electron application framework
with Node.js, Chromium browser, V8 JavaScript engine
— IDE for TypeScript in TypeScript (typed JavaScript)
e Isabelle/Scala/PIDE: slightly reworked for multiple front-ends

e |sabelle extension: via VSCode marketplace

Isabelle/VSCode

18

Isabelle/VSCode: document-oriented interaction

["\ EXPLORER
4 OPEN EDITORS

Seq.thy — HOL

Seq.thy e State

%
»
5]
=]
m

) Auto update | Update | | Locate

LEFT
® = Seq.thy ex

section <Finite sequences>

proof (prove)

v T theory Seq ggalcéicsizggzli: Cxs
S £ State imports Main ' o
4 HOL :
= ML.thy begin
MonoidGroup.thy
cH Multiquote.thy datatype 'a seq = Empty | Seq 'a "'a seq"

NatSum.thy
Normalization_by_Evaluation.thy
Parallel_Example.thy
Peano_Axioms.thy

fun conc :: "'a seq = 'a seq = 'a seq"
where

PER.thy "'conc Empty ys = ys" 1
Perm_Fragments.thy | "conc (Seq x xs) ys = Seq x (conc xs ys)"
PresburgerEx.thy 1
Primrec.thy f o . m
un reverse :: a seq » 'a seq
FREEEEy constant "Seq.seq.Seq"
£ Quicksort.thy where
Records.thy "reverse Empty = Empty" :: 'a= 'a seq = 'a seq
ReiEE R A iy | "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"
Refute_Examples.thy
Rewrite_Examples.thy
SAT_Examples.thy lemma conc_empty: "conc xs Empty = xs"
Seq.thy by (induct xs)
Serbian.thy
Set_Comprehension_Pointfree_E... " "
ot Theomh lemma conc_assoc: "conc (conc xs ys) zs = conc xs (conc ys zs)
et_Theory.thy .
= Simproc_Tests.thy by (lndUCt XS,)V
Simps_Case_Conv_Examples.thy
SOS_Cert.thy lemma reverse_conc: '"reverse (conc xs ys) = conc (reverse ys) (reverse xs)"
Slekiliy by (induct xs) (simp_all add: conc_empty conc_assoc)
Sqrt_Script.thy
Saqrt.thy
= Sudoku.thy lemma reverse_reverse: "reverse (reverse xs) = xs"
Sum_of_Powers.thy by (induct xs) (simp_all add: reverse_conc)
Tarski.thy
£ Termination.thy
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL E—‘T‘ A x
ThreeDivides.thy
Transfer_Debug.thy £ Sea.thy ex
© Failed to finish proofa: goal (2 subgoals): 1. conc Empty Empty = Empty 2. Ax1 xs. conc xs Empty = xs => conc (Seq x1 xs) Empty = Seq x1 xs (24, 16)

£ Transfer_Ex.thy
£ Transfer_Int_Nat.thy

Transitive_Closure_Table_Ex.thy

o

Failed to finish proofa: goal (2 subgoals): 1. conc (conc Empty ys) zs = conc Empty (conc ys zs) 2. Ax1xs. conc (conc xs ys) zs = conc Xs (conc ys zs) = conc (conc (Seq x1 xs) ys) ... (27, 16)

Ln23,Col1 Spaces:2 UTF-8 LF

Isabelle/VSCode

Isabelle @

19

Isabelle/VSCode: document preview

= Seq.thy x
x)

section <Finite sequences>

theory Seq
imports Main
begin

datatype 'a seq = Empty | Seq 'a "'a seq"
fun conc :: "'a seq = 'a seq = 'a seq"
where

"conc Empty ys = ys"

| "conc (Seq x xs) ys = Seq x (conc xs ys)"

fun reverse :: "'
where

"reverse Empty = Empty"
| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"

a seq = 'a seq"

lemma conc_empty: '"conc xs Empty = xs"
by (induct xs) simp_all

lemma conc_assoc: '"conc (conc xs ys) zs =
by (induct xs) simp_all

lemma reverse_conc: “reverse (conc xs ys) =
by (induct xs) (simp_all add: conc_empty conc_assoc)

lemma reverse_reverse: "reverse (reverse xs) = xs
by (induct xs) (simp_all add: reverse_conc)

end

Isabelle/VSCode

Seq.thy — Isabelle_01-Jul-2017.app

&

conc xs (conc ys zs)"

R

0

conc (reverse ys) (reverse xs)"

m

Preview "Seq"

(* Title:
Author:

HOL/ex/Seq.thy
Makarius
*)

section <Finite sequences>

theory Seq
imports Main
begin

datatype 'a seq = Empty | Seq 'a "'a seq"

fun conc ::
where

"conc Empty ys = ys"
| "conc (Seq x xs) ys =

"'a seq = 'a seq = 'a seq"

Seq x (conc xs ys)"

fun reverse ::
where

"reverse Empty = Empty"
| "reverse (Seq x xs) = conc (reverse xs)

"'a seq = 'a seq"

(Seq x Empty)"

lemma conc_empty: "conc xs Empty = xs
by (induct xs) simp_all

lemma conc_assoc: "conc (conc Xs ys) zs =
by (induct xs) simp_all

conc xs (conc ys zs)"

lemma reverse_conc: "reverse (conc xs ys) = conc (reverse ys) (reverse xs)"

by (induct xs) (simp_all add: conc_empty conc_assoc)

lemma reverse_reverse: "reverse (reverse Xs) = Xs
by (induct xs) (simp_all add: reverse_conc)

end

Ln10, Col1 Spaces:2 UTF-8 LF Isabelle @

20

Other VSCode prover projects

VSCoq: Coq Support for Visual Studio Code

e by C. J. Bell (MIT), see https://github.com/siegebell /vscoq
e uses Asynchronous Proofs from Coq/Paral-ITP project

e uses Coq XML protocol

e provides some HTML GUI components

Lean for VSCode

e by J. Roesch (Univ. Washington) and others,
see https://github.com /leanprover/vscode-lean

e uses Lean server for incremental compilation and checking
e already used in practice

Isabelle/VSCode 21

https://github.com/siegebell/vscoq
https://github.com/leanprover/vscode-lean

Potential of the VSCode/Electron platform

Technology

e High-quality HTML rendering within just one browser

e Perspective for viable multiplatform support (beyond Linux/X11)
e Generic GUI integration for:

— Debugger
— Version Control System (Git, Mercurial, . . .)

Ecosystem

e Project managed by developers at Microsoft
e Young and active community

e Many emerging projects and extensions

Isabelle/VSCode 22

Future Work

Future Work

Scaling

e editing big libraries as a whole,
notably The Archive of Formal Proofs

e offline PIDE markup in database files (e.g. SQLite)
e online PIDE markup in database server (e.g. PostgreSQL)
e integration with Version Control (e.g. Mercurial within VSCode)

Publishing

e backend: headless PIDE for “cloud” (e.g. via SSH or WebSocket)
e frontend: high-quality HTML presentation (e.g. via VSCode)

e advanced of formal publishing: KTEX and HTML / CSS / MathJax
e PIDE as webserver / cloud service?

Future Work 24

