
Isabelle/PIDE as IDE for ML

Makarius Wenzel
sketis.net

November 2016

λ
→

∀
=Is

ab
el
le

β

α

ML



Abstract

Isabelle is usually positioned as environment for interactive and automated theorem proving, but its Prover IDE (PIDE)
may be used for regular program development as well. Standard ML is particularly important here, since it is the
bootstrap language of Isabelle/ML (i.e. SML with many add-ons) and Isabelle/Pure (i.e. the logical framework).

The ML IDE functionality of Isabelle + Poly/ML is manifold:

• Continuous feedback from static analysis and semantic evaluation is already available for years, e.g. Isabelle2014
(August 2014). It is a corollary of how PIDE interaction works, and of the integration of the Poly/ML compiler
into that framework. Source files are statically checked and semantically evaluated while the user is editing. The
annotated sources contain markup about inferred types, references to defining positions of items etc.

• Source-level debugging within the IDE is new in Poly/ML 5.6, which is bundled with Isabelle2016 (February
2016). The Prover IDE provides the Debugger dockable to connect to running ML threads, inspect the
stack frame with local ML bindings, and evaluate ML expressions in a particular run-time context. See also
http://sketis.net/2016/ml-debugging-within-the-prover-ide.

• IDE support for the Isabelle/Pure bootstrap process is new technology for the coming release of Isabelle2016-1
(December 2016). The ROOT.ML file acts like a quasi-theory in the context of theory ML_Bootstrap: this allows
continuous checking of all loaded ML files. The theory file is presented with a modified header to import Pure
from the running Isabelle instance.

It is also possible to modify standalone SML projects, to edit the sources freely in the ML IDE. For example,
MetiTarski https://bitbucket.org/lcpaulson/metitarski can participate after some trivial changes of its
ROOT.ML file.

Overall, we move more and more to an integrated framework for development of formal-reasoning tools, but other
applications are admissible as well.

1

http://sketis.net/2016/ml-debugging-within-the-prover-ide
https://bitbucket.org/lcpaulson/metitarski


Isabelle/PIDE



PIDE approach (2009)

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports

Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

Isabelle/PIDE 3



Isabelle/jEdit Prover IDE (2016)

Isabelle/PIDE 4



PIDE architecture

private
protocolAPI API

S
ca
la

M
L

ML threads

ML futures

POSIX processesPOSIX processes

Java threads

Scala futures

TCP/IP servers

Prover: MLEditor: Scala

JVM bridge

Design principles:

• private protocol for prover connectivity
(asynchronous interaction, parallel evaluation)

• public Scala API
(timeless, stateless, static typing)

Isabelle/PIDE 5



PIDE markup reports

Problem: round-trip through several sophisticated syntax layers

Solution: execution trace with markup reports

text text

term

re
po
rtre

po
rt

position

Example: semantic markup for domain-specific formal languages

Isabelle/PIDE 6



Isabelle document language



Document structure

Markup

• section headings (6 levels like in HTML):
chapter, section, subsection, . . . , subparagraph

• text blocks: text, txt, text raw

• free-form LATEX macros (rare)

Markdown

• implicit paragraphs and lists: itemize, enumerate, description

Isabelle document language 8



Document antiquotations

full form: @{name [options] arguments . . .}

short form:

1. cartouche argument: \<^name>〈argument 〉

2. no argument: \<^name>
3. standard name: 〈argument 〉

Notable examples:

• cartouche, theory text : self-presentation of Isar

• bold, emph, verbatim, footnote: text styles (with proper nesting)

• noindent, smallskip, medskip, bigskip: spacing

• cite: formal BibTEX items

• path, file, dir, url, doc: system resources

Isabelle document language 9



Isabelle/ML IDE



Continuous feedback from static analysis and
semantic evaluation

• available for years, e.g. Isabelle2014 (August 2014)

• corollary of PIDE interaction and Poly/ML compiler integration

– static checking (syntax) e.g. warnings, errors, inferred types,
references to defined items

– dynamic evaluation (semantics) e.g. toplevel output

−→ Isabelle/PIDE as semantic editor for Isabelle/ML and Stan-
dard ML

Example: inlined ML source

ML 〈

fun factorial 0 = 1
| factorial n = n ∗ factorial (n − 1)

Isabelle/ML IDE 11



〉

ML 〈factorial 42〉

ML 〈factorial 10000 div factorial 9999〉

Example: external ML source

ML file ackermann.ML

• ML file better suited for big modules

• more editor support (mode isabelle-ml): keywords, Sidekick,
folding

Example: big ML projects within theory hierarchy

~~/src/HOL/HOL.thy ~~/src/Tools/quickcheck.ML

Example: official Standard ML

See ~~/src/Tools/SML/Examples.thy.

Isabelle/ML IDE 12



Source-level debugging within the IDE

• new in Poly/ML 5.6, which is bundled with Isabelle2016 (February
2016)

• Debugger dockable (isabelle-debugger):

– connect to running ML threads
– inspect stack frame with local ML bindings
– evaluate ML expressions in run-time context

See also jedit chapter 5 or http://sketis.net/2016/

ml-debugging-within-the-prover-ide.

Example: ML debugger

context notes [[ML debugger ]]
begin

ML 〈

Isabelle/ML IDE 13

http://sketis.net/2016/ml-debugging-within-the-prover-ide
http://sketis.net/2016/ml-debugging-within-the-prover-ide


fun factorial 0 = 1
| factorial n = n ∗ factorial (n − 1)

〉

end

ML 〈factorial 10〉

Isabelle/ML IDE 14



IDE support for the Isabelle/Pure bootstrap process

Entry points (independent!)

• ~~/src/Pure/ROOT0.ML – pre-bootstrap

• ~~/src/Pure/ROOT.ML – main bootstrap

• ~~/src/Pure/Pure.thy – final Pure setup (Isar commands)

• ~~/src/Pure/ML_Bootstrap.thy – theory context for ML boot-
strap

Bootstrap state

• ~~/src/Pure/Concurrent/thread_data.ML – physical thread
data

• ~~/src/Pure/Concurrent/thread_data_virtual.ML –
Isabelle context data

Isabelle/ML IDE 15



Standalone SML projects

Example: MetiTarski

hg clone https://bitbucket.org/lcpaulson/metitarski

hg import -R metitarski --no-commit

metitarski-change

• original: https://bitbucket.org/lcpaulson/metitarski

• minimal change: metitarski-change

• main directory: metitarski

• editable project sources: metitarski/src/ROOT.ML

Isabelle/ML IDE 16

https://bitbucket.org/lcpaulson/metitarski


Conclusions



Conclusions

Self-application of Isabelle/PIDE to Isabelle/Pure

Revival of Standard ML as Isabelle/ML (based on Poly/ML)

Demonstration for other Domain-specific Formal Languages

Conclusions 18



Try it yourself!

Current release: February 2016

http://isabelle.in.tum.de

Next release: December 2016

http://isabelle.in.tum.de/website-Isabelle2016-1-RC2

Conclusions 19

http://isabelle.in.tum.de
http://isabelle.in.tum.de/website-Isabelle2016-1-RC2

