from Interactive Theorem Proving
to Integrated Theorem Proving

Makarius Wenzel

November 2016



Abstract

Interactive theorem proving was historically tied to the read-eval-print loop, with sequential and synchronous evaluation
of prover commands given on the command-line. This user-interface technology was adequate when Robin Milner
introduced his LCF proof assistant in the 1970s, but today it severely restricts the potential of multicore hardware and
advanced IDE front-ends.

The Isabelle Prover IDE breaks this loop and retrofits the read-eval-print phases into an asynchronous model of
document-oriented proof processing. Instead of feeding a sequence of commands into the prover process, the primary
interface works via edits over immutable document versions. Execution is implicit and managed by the prover in a
timeless and stateless manner, making adequate use of parallel hardware.

PIDE document content consists of the theory sources (with dependencies via theory imports), and auxiliary source
files of arbitrary user-defined format: this allows to integrate other languages than Isabelle/Isar into the IDE. A notable
application is the Isabelle/ML IDE, which can be also applied to the system itself, to support interactive bootstrapping
of the Isabelle/Pure implementation.

Further tool integration works via "asynchronous print functions” that operate on already checked theory sources.
Thus long-running or potentially non-terminating processes may provide spontaneous feedback while the user is editing.
Applications range from traditional proof state output (which often consumes substantial run-time) to automated
provers and dis-provers that report on existing proof document content (e.g. Sledgehammer, Nitpick, Quickcheck in
Isabelle/HOL). It is also possible to integrate "query operations” via additional GUI panels with separate input and
output (e.g. for manual Sledgehammer invocation or find-theorems).

Thus the Prover IDE orchestrates a suite of tools that help the user to write proofs. In particular, the classic distinction
of ATP and ITP is overcome in this emerging paradigm of Integrated Theorem Proving.



History



TTY loop (= 1979)

-+ Terminal
File Edit View Terminal Tabs Help
Welcome to Isabelle/HOL (Isabelle2013: February 2013) °
> theory A imports Main begin

theory A

> lemma "x = x";

proof (prove): step ©

goal (1 subgoal):
1. x = x
> 1l
Q-+ Terminal
File Edit View Terminal Tabs Help
Welcome to Coq 8.4pl2 (September 2013)

Coq < Lemma test: forall (A: Type) (x: A), X = x .
1 subgoal

forall (A : Type) (x : A), x = X 7‘— | engis
test < i (Wikipedia: K. Thompson and D. Ritchie at PDP-11)

e user drives prover, via manual copy-paste
e inherently synchronous and sequential

History



Proof General and clones (=~ 1999)

File Edit Apps Options Buffers Tools Proof-General X-Symbol

File Edit Navigation IryTactics Templates Queries Display Compile Windows

=R el PR

EX30ETLO .

finally; show Pthesis; .;
ged;

text f*

With \namef{group-right-inverss} already availsble,

\name {group-right-unit}\label {thm:group-right-unit} is now
§5tablished much easier.

id g

theorem group_right_unit: "x o one = (x:
proof
have " e one = % e (inv x e )"
by (simp only: group_left_inverse);
also; have "... = x ® inv x ® x";
by (simp only: group_assoc);
also; have "... = one s x";
by (simp only: group_right_inverse);
also; have "... = x";
by (simp only: group_left_unit];
finally; show 7thesis; .;
ged;

text £x
\medskip The calculational proof style above follows typical

presentations given in any introductory course on algebra. The basic

technigue is to form a transitive chain of eguations, which in turn

are established hy simplifying with appropriate rules. The low-level

Trziral details af amiatinnal reasaning are Teft imnlicit

fffff XEmacs: Group.thy (Isabelle/Isar script XS:isar Font! Scriptin,

Froof (prove): step §, depth 1
goal (have):

¥ e iny x e X = One * X
1. x e iny ®x & x = one * x

————— XEmacs: #isabelle-goalsk (Isabelle/Isar proofstate)————All

Eintrow | @esamples.y |

rewrite IHn.
reflexivity.
Qed.

Lemma nat_eq_dec : forall (n m : nat), {n
induction n.
destruct m as [|m].
left.
reflexivity.
right.
discriminate.
destruct m as [|m].
right; discriminate.
destruct (IHn m) as [Hm|[Hm].
left.
rewrite Hm.|
reflexivity.
right.
intros Hnm.
apply Hm.
injection Hnm.
tauto.
Defined.

Eval compute in (nat_eq_dec 2 2).
Eval compute in (nat_eq dec 2 1).

Definition pred (n:nat) : option nat :=
match n with
| @ => None

Ll |

n

2 subgoals
& [Hn

Hm

nat, {n = m} + {n <> m}

(1/2)

Sm

(2/2)

{S n

Sm} + {Sn<>5Sm}

|Ready in Predicate_Logic, proving nat_eq_dec

Line: 159 Char: 13 Cogide started

e user drives prover, via automated copy-paste and undo

e inherently synchronous and sequential

History



PIDE: Prover IDE (~ 2009)

Approach:

Prover supports asynchronous document model natively
Editor continuously sends source edits and receives markup reports
Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

History 5



PIDE: Prover IDE (~ 2009)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports
Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

Challenge: introducing genuine interaction into ITP
e many conceptual problems

e many technical problems

e many social problems

History 5



History

Isabelle/jEdit Prover IDE (2016)

[ JoN ] & Seq.thy

TE@3E &9 ¢ XD B " HEE B & @ |€»

[ Seq.thy (SISABELLE_ROOT/src/HOL/ex/)
section <Finite sequences>

= |theory Seq
imports Main
begin

datatype 'a seq = Empty | Seq 'a "'a seq"
© |fun conc :: "'
where
"conc Empty ys = ys"
L |] "conc (Seq x xs) ys = Seq x (conc xs ys)"
3 B
o |fun reverse constant "Seq.seq.Seq"
where 11 'a = 'asegq = 'a seq
"reverse cmpcy Ty

a seq = 'a seq — 'a seq"

T lemma conc_empty: 'conc xs Empty = xs"
by (induct xs) simp_all

Proof state Auto update Update Search:

constants
conc :: "'a seq = 'a seq = 'a seq"

Found termination order: "(Ap. size (fst p)) <*mlex*> {}"

B « OQOutput
13,39 (200/789)

L[] "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"

E @ El isabelle

Filter:

ol |

seq.thy
¥ section <Finite sequences:
theory Seq
datatype 'a seq = Empty | Seq 'a "'a s¢

fun reverse :: "'a seq = 'a seq
lema conc_empty: "conc xs Empty = xs"
lemma conc_assoc: “conc fconc xs ys) zg
lemma reverse_conc: “rewerse (conc xs

lemma reverse_reverse: “reverse (revers

- 0% v

(isabelle.isabelle,UTF-8-lsabelle) UG IR/ 495MB 4:46 PM

—— advanced user interaction

q

A42pIS



History

Automatically tried tools (2016)

@ @ Scratch.thy

D@38 & 9¢ 0B B CDREE BX & @ |€»

O Scratch.thy (~/)

|

@

theory Scratch
imports Main

bhegin

datatype 'a tree = Tip | Tree 'a "'a tree" "'a tree"
fun tree_of_list :: "'a list = 'a tree"

where

"tree_of_list [] = Tip"
| "tree_of_list (x # xs) = Tree x Tip (tree_of_list xs)"

fun list_of_tree :: "'a tree = 'a list"
where
"list_of_tree Tip = []"

Llemma "list_of_tree (tree_of_list xs) = xs"
by (induct xs) simp_all

lemma "tree_of_list (list_of_tree t) = t"l
33

= Auto Quickcheck found a counterexample:
[ t = Tree a; (Tree a; Tip Tip) Tip
o Ewvaluated terms:
tree_of_list (list_of_tree t) =
Tree a; Tip (Tree a; Tip Tip)

| "list_of_tree (Tree x t1 t2) = x # list_of_tree t1 @ list_of_tree t2"

20,42 (476/477)

(isabelle,isabelle,UTF-8-1sabelle) UG IEETE/ 495MB 4:28 PM

— advanced tool integration



Isabelle/PIDE building blocks

jEdit: sophisticated text editor implemented in Java
http://www.jedit.org

Scala: higher-order functional-object-oriented programming on JVM
http://www.scala-lang.org

PIDE: general framework for Prover IDEs based on Scala
with parallel and asynchronous document processing

Isabelle/jEdit:

e main example application of the PIDE framework
e default user-interface for Isabelle

e filthy rich client: 2 cores + 4 GB RAM minimum

History


http://www.jedit.org
http://www.scala-lang.org

PIDE architecture



The connectivity problem

Editor: Scala

Prover: ML

TCP/IP servers

Java threads

Scala futures

POSIX processes API

<“—>r

Scala

JVM bridge

private
protocol

S

ML

API POSIX processes

S =
ML threads

ML futures

Design principles:

e private protocol for prover connectivity
(asynchronous interaction, parallel evaluation)

e public Scala API

(timeless, stateless, static typing)

PIDE architecture

10



PIDE protocol functions

commands

I—

Editor Prover

messages

-~

e type protocol_command = name — nput — unit
e type protocol_message = name — output — unit
e outermost state of protocol handlers on each side (pure values)
e asynchronous streaming in each direction
—— editor and prover as stream-procession functions

PIDE architecture



Approximative rendering of document snapshots

edits
I

D
£
%]
@ g Prover
©

o

Editor

approximation

markup
I ——

editor knows text T', markup M, and edits AT (produced by user)
apply edits: 7" =T + AT (immediately in editor)
formal processing of T': AM after time At (eventually in prover)

= b=

temporary approximation (immediately in editor):
M = revert AT retrieve M ; convert AT

5. convergence after time At (eventually in editor):
M =M+ AM

PIDE architecture 12



Document content and execution



Prover command transactions

e “small” toplevel state st: Toplevel.state

e command transaction ¢r as partial function over st
we write stg —'" sty for st; = tr st

e general structure: tr = read; eval; print

Interaction view:

tr stg =
let eval = read () in — read does not require st
let st; = eval sty in — main transition stg —> st
let () = print st; in sty — print does not change sty

Important: purely functional transactions with managed output

Document content and execution

14



Command scheduling

Sequential R-E-P Loop:

read — eval  print read  eval  print read  eval  print
\ \ \ \ \ \ \

Sto 7 7 7 Stl 7 e 7 StQ 7 7 8t3

~

Document content and execution 15



Command scheduling

Sequential R-E-P Loop:

read — eval  print read  eval  print read  eval  print
\ \ \ \ \ \ \

Sto 7 7 7 Stl 7 e 7 StQ 7 7 8t3

~

PIDE 2011/2012:
\Lread \Lread \Lread

St() _>eval Stl _>efual StQ _>eval Stg

\me’nt \me'nt \me’nt

Document content and execution 15



Command scheduling

Sequential R-E-P Loop:

read ~ eval  print
\ \ \

Sto 7

read  eval  print
\ \ \

7 Stl 7 7 7

~N

PIDE 2011/2012:
\l/read l,read \l/read

sto ——y vl stq —yeval Sto
\me’nt \me’nt
PIDE 2013/2014:
\Lread \Lread \l/read

Sto _>eval Stl _>eval St2

ii forks ¢¢prmts i i forks i ymmts

Document content and execution

read  eval  print
\ \ \

Stg

\ eval

\ eval

$ \Lforks

4 4

~

Stg

\me’nt

8t3

\L\me’nts

8t3

15



Document nodes

Global structure: directed acyclic graph (DAG) of theories
Local structure:

entries: linear sequence of command spans,
with static command_id and dynamic exec_id

perspective: visible and required commands,
according to structural dependencies

overlays: print functions over commands (with arguments)

Document content and execution

16



Document nodes

Global structure: directed acyclic graph (DAG) of theories
Local structure:
entries: linear sequence of command spans,

with static command_id and dynamic exec_id

perspective: visible and required commands,
according to structural dependencies

overlays: print functions over commands (with arguments)

Notes:

e for each document version, the command exec assignment
identifies results of (single) eval st or (multiple) print st

e the same execs may coincide for different versions

e non-visible / non-required commands remain unassigned

Document content and execution 16



Document edits

Key operation: update ~~ assignment

datatype edit = Dependencies | Entries | Perspective | Overlays
val Document.update: version_id — version_id —»

(node x edit) list — state —

(command_id x exec_id list) list X state

Notes:
e document update restructures hypothetical execution
e command exec assignment is acknowledged quickly
e actual execution is scheduled separately
—— protocol thread remains reactive with reasonable latency

Document content and execution 17



Execution management

Prerequisites:

e native threads in Poly/ML (D. Matthews, 2006 . . . )
e future values in Isabelle/ML (M. Wenzel, 2008 . . . )

Execution in PIDE 2013/2014:

Hypothetical execution: lazy execution outline with
symbolic assignment of exec_ids to eval and prints

Execution frontiers: conflict avoidance of consecutive versions

Execution.start: unit — execution_id
FExecution.discontinue: unit — unit
Ezxecution.running: execution_id — exec_id — bool

Execution forks: managed future groups within execution context

Ezecution.fork: exec_id — (unit — o) — « future
FExecution.cancel: exec_id — unit

Document content and execution 18



PIDE backend implementation



PIDE protocol layers (1)

Bidirectional byte-channel:

e pure byte streams with block-buffering
e high throughput
e TCP socket; not stdin/stdout

Message chunks:

e explicit length indication
e block-oriented 1/0

Text encoding and character positions:

e reconcile ASCII, ISO-Latin-1, UTF-8, UTF-16
e unify Unix / Windows line-endings
e occasional readjustment of positions

PIDE backend implementation

20



PIDE protocol layers (2)

YXML transfer syntax:

markup trees over plain text

e simple and robust transfer syntax

easy upgrade of text-based application

XML/ML data representation

canonical encoding / decoding of ML-like datatypes

combinator library for each participating language, e.g. SML:

type o Encode. T = o — XML.tree list

Encode.string: string Encode.T
Encode.pair: o Encode.T — B Encode.T — (o X (3) Encode.T
Encode.list: o Encode. T — « list Encode. T

untyped data representation of typed data
typed conversion functions

PIDE backend implementation

21



Markup reports

Problem: round-trip through several sophisticated syntax layers
Solution: execution trace with markup reports

text text

Example: semantic markup for domain-specific formal languages

PIDE backend implementation 22



Conclusions



Achievements

Renovation and reform . ..

of Interactive/Integrated Theorem Proving
for new generations of users

Paradigm shift . . .
adequate use of multicore hardware with pervasive parallelism

Document-oriented approach . ..

for user interaction and tool integration

— Towards The Archive of Formal Proofs as one big document!

Conclusions

24



Lessons learned

e Substantial reforms of LCF-style theorem proving are possible,

with big impact on infrastructure, but little impact on existing
tools.

e Parallel processing is relatively easy, compared to the difficulties
of asynchronous user interaction and tool integration.

e Real-world frameworks like JVM/Swing impose technical side-
conditions and challenges, notably for multi-platform support.

Conclusions 25



Try it yourself!

Current release: February 2016
http://isabelle.in.tum.de

Next release: December 2016
http://isabelle.in.tum.de/website-Isabelle2016-1-RC2

Conclusions

26


http://isabelle.in.tum.de
http://isabelle.in.tum.de/website-Isabelle2016-1-RC2

