
λ
→

∀
=Is

ab
el
le

β

α

PIDE

from Interactive Theorem Proving
to Integrated Theorem Proving

Makarius Wenzel

November 2016

Abstract

Interactive theorem proving was historically tied to the read-eval-print loop, with sequential and synchronous evaluation
of prover commands given on the command-line. This user-interface technology was adequate when Robin Milner
introduced his LCF proof assistant in the 1970s, but today it severely restricts the potential of multicore hardware and
advanced IDE front-ends.

The Isabelle Prover IDE breaks this loop and retrofits the read-eval-print phases into an asynchronous model of
document-oriented proof processing. Instead of feeding a sequence of commands into the prover process, the primary
interface works via edits over immutable document versions. Execution is implicit and managed by the prover in a
timeless and stateless manner, making adequate use of parallel hardware.

PIDE document content consists of the theory sources (with dependencies via theory imports), and auxiliary source
files of arbitrary user-defined format: this allows to integrate other languages than Isabelle/Isar into the IDE. A notable
application is the Isabelle/ML IDE, which can be also applied to the system itself, to support interactive bootstrapping
of the Isabelle/Pure implementation.

Further tool integration works via ”asynchronous print functions” that operate on already checked theory sources.
Thus long-running or potentially non-terminating processes may provide spontaneous feedback while the user is editing.
Applications range from traditional proof state output (which often consumes substantial run-time) to automated
provers and dis-provers that report on existing proof document content (e.g. Sledgehammer, Nitpick, Quickcheck in
Isabelle/HOL). It is also possible to integrate ”query operations” via additional GUI panels with separate input and
output (e.g. for manual Sledgehammer invocation or find-theorems).

Thus the Prover IDE orchestrates a suite of tools that help the user to write proofs. In particular, the classic distinction
of ATP and ITP is overcome in this emerging paradigm of Integrated Theorem Proving.

1

History

TTY loop (≈ 1979)

(Wikipedia: K. Thompson and D. Ritchie at PDP-11)

• user drives prover, via manual copy-paste

• inherently synchronous and sequential

History 3

Proof General and clones (≈ 1999)

• user drives prover, via automated copy-paste and undo

• inherently synchronous and sequential

History 4

PIDE: Prover IDE (≈ 2009)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports

Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

History 5

PIDE: Prover IDE (≈ 2009)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports

Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

Challenge: introducing genuine interaction into ITP

• many conceptual problems

• many technical problems

• many social problems

History 5

Isabelle/jEdit Prover IDE (2016)

−→ advanced user interaction

History 6

Automatically tried tools (2016)

−→ advanced tool integration

History 7

Isabelle/PIDE building blocks

jEdit: sophisticated text editor implemented in Java
http://www.jedit.org

Scala: higher-order functional-object-oriented programming on JVM
http://www.scala-lang.org

PIDE: general framework for Prover IDEs based on Scala
with parallel and asynchronous document processing

Isabelle/jEdit:

• main example application of the PIDE framework

• default user-interface for Isabelle

• filthy rich client: 2 cores + 4 GB RAM minimum

History 8

http://www.jedit.org
http://www.scala-lang.org

PIDE architecture

The connectivity problem

private
protocolAPI API

S
ca
la

M
L

ML threads

ML futures

POSIX processesPOSIX processes

Java threads

Scala futures

TCP/IP servers

Prover: MLEditor: Scala

JVM bridge

Design principles:

• private protocol for prover connectivity
(asynchronous interaction, parallel evaluation)

• public Scala API
(timeless, stateless, static typing)

PIDE architecture 10

PIDE protocol functions

Editor Prover

commands

messages

• type protocol command = name → input → unit

• type protocol message = name → output → unit

• outermost state of protocol handlers on each side (pure values)

• asynchronous streaming in each direction

−→ editor and prover as stream-procession functions

PIDE architecture 11

Approximative rendering of document snapshots

Editor Prover

edits

markup

p
ro
ce
ss
in
g

a
p
p
ro
x
im

a
ti
o
n

Δt

1. editor knows text T , markup M , and edits ∆T (produced by user)

2. apply edits: T ′ = T + ∆T (immediately in editor)

3. formal processing of T ′: ∆M after time ∆t (eventually in prover)

4. temporary approximation (immediately in editor):
M̃ = revert ∆T ; retrieve M ; convert ∆T

5. convergence after time ∆t (eventually in editor):
M ′ = M + ∆M

PIDE architecture 12

Document content and execution

Prover command transactions

• “small” toplevel state st : Toplevel .state

• command transaction tr as partial function over st

we write st0 −→tr st1 for st1 = tr st0
• general structure: tr = read ; eval ; print

Interaction view:

tr st0 =
let eval = read () in — read does not require st0
let st1 = eval st0 in — main transition st0 −→ st1
let () = print st1 in st1 — print does not change st1

Important: purely functional transactions with managed output

Document content and execution 14

Command scheduling

Sequential R-E-P Loop:

st0
read−→ eval−→ print−→ st1

read−→ eval−→ print−→ st2
read−→ eval−→ print−→ st3 · · ·

Document content and execution 15

Command scheduling

Sequential R-E-P Loop:

st0
read−→ eval−→ print−→ st1

read−→ eval−→ print−→ st2
read−→ eval−→ print−→ st3 · · ·

PIDE 2011/2012:

↓read ↓read ↓read · · ·
st0 −→eval st1 −→eval st2 −→eval st3 · · ·

↓print ↓print ↓print · · ·

Document content and execution 15

Command scheduling

Sequential R-E-P Loop:

st0
read−→ eval−→ print−→ st1

read−→ eval−→ print−→ st2
read−→ eval−→ print−→ st3 · · ·

PIDE 2011/2012:

↓read ↓read ↓read · · ·
st0 −→eval st1 −→eval st2 −→eval st3 · · ·

↓print ↓print ↓print · · ·

PIDE 2013/2014:

↓read ↓read ↓read · · ·
st0 −→eval st1 −→eval st2 −→eval st3 · · ·

↓↓forks ↓↓prints ↓↓forks ↓↓prints ↓↓forks ↓↓prints · · ·

Document content and execution 15

Document nodes

Global structure: directed acyclic graph (DAG) of theories

Local structure:

entries: linear sequence of command spans,
with static command id and dynamic exec id

perspective: visible and required commands,
according to structural dependencies

overlays: print functions over commands (with arguments)

Document content and execution 16

Document nodes

Global structure: directed acyclic graph (DAG) of theories

Local structure:

entries: linear sequence of command spans,
with static command id and dynamic exec id

perspective: visible and required commands,
according to structural dependencies

overlays: print functions over commands (with arguments)

Notes:

• for each document version, the command exec assignment
identifies results of (single) eval st or (multiple) print st

• the same execs may coincide for different versions

• non-visible / non-required commands remain unassigned

Document content and execution 16

Document edits

Key operation: update assignment

datatype edit = Dependencies | Entries | Perspective | Overlays
val Document .update: version id → version id →

(node × edit) list → state →
(command id × exec id list) list × state

Notes:

• document update restructures hypothetical execution

• command exec assignment is acknowledged quickly

• actual execution is scheduled separately

−→ protocol thread remains reactive with reasonable latency

Document content and execution 17

Execution management

Prerequisites:

• native threads in Poly/ML (D. Matthews, 2006 . . .)

• future values in Isabelle/ML (M. Wenzel, 2008 . . .)

Execution in PIDE 2013/2014:

Hypothetical execution: lazy execution outline with
symbolic assignment of exec ids to eval and prints

Execution frontiers: conflict avoidance of consecutive versions
Execution.start: unit → execution id
Execution.discontinue: unit → unit
Execution.running: execution id → exec id → bool

Execution forks: managed future groups within execution context
Execution.fork : exec id → (unit → α) → α future

Execution.cancel : exec id → unit

Document content and execution 18

PIDE backend implementation

PIDE protocol layers (1)

Bidirectional byte-channel:

• pure byte streams with block-buffering

• high throughput

• TCP socket; not stdin/stdout

Message chunks:

• explicit length indication

• block-oriented I/O

Text encoding and character positions:

• reconcile ASCII, ISO-Latin-1, UTF-8, UTF-16

• unify Unix / Windows line-endings

• occasional readjustment of positions

PIDE backend implementation 20

PIDE protocol layers (2)

YXML transfer syntax:

• markup trees over plain text

• simple and robust transfer syntax

• easy upgrade of text-based application

XML/ML data representation

• canonical encoding / decoding of ML-like datatypes

• combinator library for each participating language, e.g. SML:
type α Encode.T = α → XML.tree list
Encode.string: string Encode.T
Encode.pair : α Encode.T → β Encode.T → (α × β) Encode.T
Encode.list: α Encode.T → α list Encode.T

• untyped data representation of typed data

• typed conversion functions

PIDE backend implementation 21

Markup reports

Problem: round-trip through several sophisticated syntax layers

Solution: execution trace with markup reports

text text

term

re
po
rtre

po
rt

position

Example: semantic markup for domain-specific formal languages

PIDE backend implementation 22

Conclusions

Achievements

Renovation and reform . . .

of Interactive/Integrated Theorem Proving
for new generations of users

Paradigm shift . . .

adequate use of multicore hardware with pervasive parallelism

Document-oriented approach . . .

for user interaction and tool integration

−→ Towards The Archive of Formal Proofs as one big document!

Conclusions 24

Lessons learned

• Substantial reforms of LCF-style theorem proving are possible,
with big impact on infrastructure, but little impact on existing
tools.

• Parallel processing is relatively easy, compared to the difficulties
of asynchronous user interaction and tool integration.

• Real-world frameworks like JVM/Swing impose technical side-
conditions and challenges, notably for multi-platform support.

Conclusions 25

Try it yourself!

Current release: February 2016

http://isabelle.in.tum.de

Next release: December 2016

http://isabelle.in.tum.de/website-Isabelle2016-1-RC2

Conclusions 26

http://isabelle.in.tum.de
http://isabelle.in.tum.de/website-Isabelle2016-1-RC2

