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Abstract

Interactive theorem proving was historically tied to the read-eval-print loop, with sequential and synchronous evaluation
of prover commands given on the command-line. This user-interface technology was adequate when Robin Milner
introduced his LCF proof assistant in the 1970s, but today it severely restricts the potential of multicore hardware and
advanced IDE front-ends.

The Isabelle Prover IDE breaks this loop and retrofits the read-eval-print phases into an asynchronous model of
document-oriented proof processing. Instead of feeding a sequence of commands into the prover process, the primary
interface works via edits over immutable document versions. Execution is implicit and managed by the prover in a
timeless and stateless manner, making adequate use of parallel hardware.

PIDE document content consists of the theory sources (with dependencies via theory imports), and auxiliary source
files of arbitrary user-defined format: this allows to integrate other languages than Isabelle/Isar into the IDE. A notable
application is the Isabelle/ML IDE, which can be also applied to the system itself, to support interactive bootstrapping
of the Isabelle/Pure implementation.

Further tool integration works via "asynchronous print functions” that operate on already checked theory sources.
Thus long-running or potentially non-terminating processes may provide spontaneous feedback while the user is editing.
Applications range from traditional proof state output (which often consumes substantial run-time) to automated
provers and dis-provers that report on existing proof document content (e.g. Sledgehammer, Nitpick, Quickcheck in
Isabelle/HOL). It is also possible to integrate "query operations” via additional GUI panels with separate input and
output (e.g. for manual Sledgehammer invocation or find-theorems).

Thus the Prover IDE orchestrates a suite of tools that help the user to write proofs. In particular, the classic distinction
of ATP and ITP is overcome in this emerging paradigm of Integrated Theorem Proving.
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TTY loop (= 1979)

-+ Terminal
File Edit View Terminal Tabs Help
Welcome to Isabelle/HOL (Isabelle2013: February 2013) °
> theory A imports Main begin

theory A

> lemma "x = x";

proof (prove): step ©

goal (1 subgoal):
1. x = x
> 1l
Q-+ Terminal
File Edit View Terminal Tabs Help
Welcome to Coq 8.4pl2 (September 2013)

Coq < Lemma test: forall (A: Type) (x: A), X = x .
1 subgoal

forall (A : Type) (x : A), x = X 7‘— | engis
test < i (Wikipedia: K. Thompson and D. Ritchie at PDP-11)

e user drives prover, via manual copy-paste
e inherently synchronous and sequential
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Proof General and clones (=~ 1999)

File Edit Apps Options Buffers Tools Proof-General X-Symbol

File Edit Navigation IryTactics Templates Queries Display Compile Windows

=R el PR

EX30ETLO .

finally; show Pthesis; .;
ged;

text f*

With \namef{group-right-inverss} already availsble,

\name {group-right-unit}\label {thm:group-right-unit} is now
§5tablished much easier.

id g

theorem group_right_unit: "x o one = (x:
proof
have " e one = % e (inv x e )"
by (simp only: group_left_inverse);
also; have "... = x ® inv x ® x";
by (simp only: group_assoc);
also; have "... = one s x";
by (simp only: group_right_inverse);
also; have "... = x";
by (simp only: group_left_unit];
finally; show 7thesis; .;
ged;

text £x
\medskip The calculational proof style above follows typical

presentations given in any introductory course on algebra. The basic

technigue is to form a transitive chain of eguations, which in turn

are established hy simplifying with appropriate rules. The low-level

Trziral details af amiatinnal reasaning are Teft imnlicit

fffff XEmacs: Group.thy (Isabelle/Isar script XS:isar Font! Scriptin,

Froof (prove): step §, depth 1
goal (have):

¥ e iny x e X = One * X
1. x e iny ®x & x = one * x

————— XEmacs: #isabelle-goalsk (Isabelle/Isar proofstate)————All

Eintrow | @esamples.y |

rewrite IHn.
reflexivity.
Qed.

Lemma nat_eq_dec : forall (n m : nat), {n
induction n.
destruct m as [|m].
left.
reflexivity.
right.
discriminate.
destruct m as [|m].
right; discriminate.
destruct (IHn m) as [Hm|[Hm].
left.
rewrite Hm.|
reflexivity.
right.
intros Hnm.
apply Hm.
injection Hnm.
tauto.
Defined.

Eval compute in (nat_eq_dec 2 2).
Eval compute in (nat_eq dec 2 1).

Definition pred (n:nat) : option nat :=
match n with
| @ => None

Ll |

n

2 subgoals
& [Hn

Hm

nat, {n = m} + {n <> m}

(1/2)

Sm

(2/2)

{S n

Sm} + {Sn<>5Sm}

|Ready in Predicate_Logic, proving nat_eq_dec

Line: 159 Char: 13 Cogide started

e user drives prover, via automated copy-paste and undo

e inherently synchronous and sequential
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PIDE: Prover IDE (~ 2009)

Approach:

Prover supports asynchronous document model natively
Editor continuously sends source edits and receives markup reports
Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup
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PIDE: Prover IDE (~ 2009)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports
Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

Challenge: introducing genuine interaction into ITP
e many conceptual problems

e many technical problems

e many social problems

History 5



History

Isabelle/jEdit Prover IDE (2016)

[ JoN ] & Seq.thy

TE@3E &9 ¢ XD B " HEE B & @ |€»

[ Seq.thy (SISABELLE_ROOT/src/HOL/ex/)
section <Finite sequences>

= |theory Seq
imports Main
begin

datatype 'a seq = Empty | Seq 'a "'a seq"
© |fun conc :: "'
where
"conc Empty ys = ys"
L |] "conc (Seq x xs) ys = Seq x (conc xs ys)"
3 B
o |fun reverse constant "Seq.seq.Seq"
where 11 'a = 'asegq = 'a seq
"reverse cmpcy Ty

a seq = 'a seq — 'a seq"

T lemma conc_empty: 'conc xs Empty = xs"
by (induct xs) simp_all

Proof state Auto update Update Search:

constants
conc :: "'a seq = 'a seq = 'a seq"

Found termination order: "(Ap. size (fst p)) <*mlex*> {}"

B « OQOutput
13,39 (200/789)

L[] "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"

E @ El isabelle

Filter:

ol |

seq.thy
¥ section <Finite sequences:
theory Seq
datatype 'a seq = Empty | Seq 'a "'a s¢

fun reverse :: "'a seq = 'a seq
lema conc_empty: "conc xs Empty = xs"
lemma conc_assoc: “conc fconc xs ys) zg
lemma reverse_conc: “rewerse (conc xs

lemma reverse_reverse: “reverse (revers

- 0% v

(isabelle.isabelle,UTF-8-lsabelle) UG IR/ 495MB 4:46 PM

—— advanced user interaction

q

A42pIS



History

Automatically tried tools (2016)

@ @ Scratch.thy

D@38 & 9¢ 0B B CDREE BX & @ |€»

O Scratch.thy (~/)

|

@

theory Scratch
imports Main

bhegin

datatype 'a tree = Tip | Tree 'a "'a tree" "'a tree"
fun tree_of_list :: "'a list = 'a tree"

where

"tree_of_list [] = Tip"
| "tree_of_list (x # xs) = Tree x Tip (tree_of_list xs)"

fun list_of_tree :: "'a tree = 'a list"
where
"list_of_tree Tip = []"

Llemma "list_of_tree (tree_of_list xs) = xs"
by (induct xs) simp_all

lemma "tree_of_list (list_of_tree t) = t"l
33

= Auto Quickcheck found a counterexample:
[ t = Tree a; (Tree a; Tip Tip) Tip
o Ewvaluated terms:
tree_of_list (list_of_tree t) =
Tree a; Tip (Tree a; Tip Tip)

| "list_of_tree (Tree x t1 t2) = x # list_of_tree t1 @ list_of_tree t2"

20,42 (476/477)

(isabelle,isabelle,UTF-8-1sabelle) UG IEETE/ 495MB 4:28 PM

— advanced tool integration



Isabelle/PIDE building blocks

jEdit: sophisticated text editor implemented in Java
http://www.jedit.org

Scala: higher-order functional-object-oriented programming on JVM
http://www.scala-lang.org

PIDE: general framework for Prover IDEs based on Scala
with parallel and asynchronous document processing

Isabelle/jEdit:

e main example application of the PIDE framework
e default user-interface for Isabelle

e filthy rich client: 2 cores + 4 GB RAM minimum

History


http://www.jedit.org
http://www.scala-lang.org

PIDE architecture



The connectivity problem

Editor: Scala

Prover: ML

TCP/IP servers

Java threads

Scala futures

POSIX processes API

<“—>r

Scala

JVM bridge

private
protocol

S

ML

API POSIX processes

S =
ML threads

ML futures

Design principles:

e private protocol for prover connectivity
(asynchronous interaction, parallel evaluation)

e public Scala API

(timeless, stateless, static typing)

PIDE architecture

10



PIDE protocol functions

commands

I—

Editor Prover

messages

-~

e type protocol_command = name — nput — unit
e type protocol_message = name — output — unit
e outermost state of protocol handlers on each side (pure values)
e asynchronous streaming in each direction
—— editor and prover as stream-procession functions

PIDE architecture



Approximative rendering of document snapshots

edits
I

D
£
%]
@ g Prover
©

o

Editor

approximation

markup
I ——

editor knows text T', markup M, and edits AT (produced by user)
apply edits: 7" =T + AT (immediately in editor)
formal processing of T': AM after time At (eventually in prover)

= b=

temporary approximation (immediately in editor):
M = revert AT retrieve M ; convert AT

5. convergence after time At (eventually in editor):
M =M+ AM

PIDE architecture 12



Document content and execution



Prover command transactions

e “small” toplevel state st: Toplevel.state

e command transaction ¢r as partial function over st
we write stg —'" sty for st; = tr st

e general structure: tr = read; eval; print

Interaction view:

tr stg =
let eval = read () in — read does not require st
let st; = eval sty in — main transition stg —> st
let () = print st; in sty — print does not change sty

Important: purely functional transactions with managed output

Document content and execution

14



Command scheduling

Sequential R-E-P Loop:

read — eval  print read  eval  print read  eval  print
\ \ \ \ \ \ \

Sto 7 7 7 Stl 7 e 7 StQ 7 7 8t3

~

Document content and execution 15



Command scheduling

Sequential R-E-P Loop:

read — eval  print read  eval  print read  eval  print
\ \ \ \ \ \ \

Sto 7 7 7 Stl 7 e 7 StQ 7 7 8t3

~

PIDE 2011/2012:
\Lread \Lread \Lread

St() _>eval Stl _>efual StQ _>eval Stg

\me’nt \me'nt \me’nt

Document content and execution 15



Command scheduling

Sequential R-E-P Loop:

read ~ eval  print
\ \ \

Sto 7

read  eval  print
\ \ \

7 Stl 7 7 7

~N

PIDE 2011/2012:
\l/read l,read \l/read

sto ——y vl stq —yeval Sto
\me’nt \me’nt
PIDE 2013/2014:
\Lread \Lread \l/read

Sto _>eval Stl _>eval St2

ii forks ¢¢prmts i i forks i ymmts

Document content and execution

read  eval  print
\ \ \

Stg

\ eval

\ eval

$ \Lforks

4 4

~

Stg

\me’nt

8t3

\L\me’nts

8t3

15



Document nodes

Global structure: directed acyclic graph (DAG) of theories
Local structure:

entries: linear sequence of command spans,
with static command_id and dynamic exec_id

perspective: visible and required commands,
according to structural dependencies

overlays: print functions over commands (with arguments)

Document content and execution

16



Document nodes

Global structure: directed acyclic graph (DAG) of theories
Local structure:
entries: linear sequence of command spans,

with static command_id and dynamic exec_id

perspective: visible and required commands,
according to structural dependencies

overlays: print functions over commands (with arguments)

Notes:

e for each document version, the command exec assignment
identifies results of (single) eval st or (multiple) print st

e the same execs may coincide for different versions

e non-visible / non-required commands remain unassigned

Document content and execution 16



Document edits

Key operation: update ~~ assignment

datatype edit = Dependencies | Entries | Perspective | Overlays
val Document.update: version_id — version_id —»

(node x edit) list — state —

(command_id x exec_id list) list X state

Notes:
e document update restructures hypothetical execution
e command exec assignment is acknowledged quickly
e actual execution is scheduled separately
—— protocol thread remains reactive with reasonable latency

Document content and execution 17



Execution management

Prerequisites:

e native threads in Poly/ML (D. Matthews, 2006 . . . )
e future values in Isabelle/ML (M. Wenzel, 2008 . . . )

Execution in PIDE 2013/2014:

Hypothetical execution: lazy execution outline with
symbolic assignment of exec_ids to eval and prints

Execution frontiers: conflict avoidance of consecutive versions

Execution.start: unit — execution_id
FExecution.discontinue: unit — unit
Ezxecution.running: execution_id — exec_id — bool

Execution forks: managed future groups within execution context

Ezecution.fork: exec_id — (unit — o) — « future
FExecution.cancel: exec_id — unit

Document content and execution 18



PIDE backend implementation



PIDE protocol layers (1)

Bidirectional byte-channel:

e pure byte streams with block-buffering
e high throughput
e TCP socket; not stdin/stdout

Message chunks:

e explicit length indication
e block-oriented 1/0

Text encoding and character positions:

e reconcile ASCII, ISO-Latin-1, UTF-8, UTF-16
e unify Unix / Windows line-endings
e occasional readjustment of positions

PIDE backend implementation

20



PIDE protocol layers (2)

YXML transfer syntax:

markup trees over plain text

e simple and robust transfer syntax

easy upgrade of text-based application

XML/ML data representation

canonical encoding / decoding of ML-like datatypes

combinator library for each participating language, e.g. SML:

type o Encode. T = o — XML.tree list

Encode.string: string Encode.T
Encode.pair: o Encode.T — B Encode.T — (o X (3) Encode.T
Encode.list: o Encode. T — « list Encode. T

untyped data representation of typed data
typed conversion functions

PIDE backend implementation

21



Markup reports

Problem: round-trip through several sophisticated syntax layers
Solution: execution trace with markup reports

text text

Example: semantic markup for domain-specific formal languages

PIDE backend implementation 22



Conclusions



Achievements

Renovation and reform . ..

of Interactive/Integrated Theorem Proving
for new generations of users

Paradigm shift . . .
adequate use of multicore hardware with pervasive parallelism

Document-oriented approach . ..

for user interaction and tool integration

— Towards The Archive of Formal Proofs as one big document!

Conclusions
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Lessons learned

e Substantial reforms of LCF-style theorem proving are possible,

with big impact on infrastructure, but little impact on existing
tools.

e Parallel processing is relatively easy, compared to the difficulties
of asynchronous user interaction and tool integration.

e Real-world frameworks like JVM/Swing impose technical side-
conditions and challenges, notably for multi-platform support.

Conclusions 25



Try it yourself!

Current release: February 2016
http://isabelle.in.tum.de

Next release: December 2016
http://isabelle.in.tum.de/website-Isabelle2016-1-RC2

Conclusions
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