
The Isar Proof Language
in 2016

Makarius Wenzel
sketis.net

August 2016

λ
→

∀
=Is

ab
el
le

β

α

Isar

Introduction

History of Isar

1999: first usable version

• primary notion of proof document (not “proof script”)

• secondary notion of proof method (not “tactic”)

2000–2001: various refinements

2006: minor reforms

• unfolding, obtains, literal facts: 〈prop〉

• advanced induct method

2016: major renovations

where “2016” means . . .

• current release: Isabelle2016 (February 2016)

• coming release: Isabelle2016-1 (November/December 2016)

Introduction 2

Structured statements

Structured assumptions

Postfix notation for Horn-clauses:

• assume B if A1 and A2 for a1 a2

– corresponds to assume
∧

a1 a2. A1 =⇒ A2 =⇒ B
– vacuous quantifiers are omitted

• similar for obtain, define

• similar for inductive, definition, function etc.

Structured statements 4

Example: structured specifications

inductive set star (? [100] 100) for R :: (′a × ′a) set
where

base: (x , x) ∈ R? for x
| step: (x , z) ∈ R? if (x , y) ∈ R and (y , z) ∈ R? for x y z

function gcd :: nat ⇒ nat ⇒ nat
where

gcd x 0 = x
| gcd 0 y = y
| gcd (Suc x) (Suc y) = gcd (Suc x) (y − x) if x < y
| gcd (Suc x) (Suc y) = gcd (x − y) (Suc y) if ¬ x < y

Structured statements 5

Structured conclusions (goals)

Notation for Isar “eigen-context”:

• premises: have B if A1 A2

• parameters: have B for a1 a2

• corresponds to { fix a1 a2 assume that : A1 A2 have B }
• analogous to lemma fixes a1 a2 assumes that : A1 A2 shows B

Structured statements 6

Example: Natural Deduction
with structured conclusions

• conjunction introduction:
have A ∧ B if A and B

• existential introduction:
have ∃ x . B x if B a for a

• disjunction elimination:
from 〈A ∨ B 〉 have C if A =⇒ C and B =⇒ C for C

• existential elimination:
from 〈∃ x . B x 〉 have C if

∧
x . B x =⇒ C for C

Structured statements 7

Elimination statements

consider x where A x | y where B y | . . . ≡
have thesis

if
∧
x. A x =⇒ thesis

and
∧
y. B y =⇒ thesis

for thesis

Examples:

• existential elimination:
from 〈∃ x . B x 〉 consider x where B x

• conjunction elimination:
from 〈A ∧ B 〉 consider A and B

• disjunction elimination:
from 〈A ∨ B 〉 consider A | B

Structured statements 8

Elimination and cases

• method “cases” detects its rule from chained facts

• command “case” allows name and attribute specification

Example:

consider x where A x | y where B y 〈proof 〉
then have something
proof cases

case prems: 1
show ?thesis using prems 〈proof 〉

next
case prems: 2
show ?thesis using prems 〈proof 〉

qed

Structured statements 9

Obtain

obtain x where A x 〈proof 〉 ≡
consider x where A x 〈proof 〉
fix x assume∗ A x

• old meaning is unchanged, but foundation simplified

• is patterns now supported (with λ-lifting over the parameters)

• if / for notation available as well

Structured statements 10

Define

define c where c x = t for x ≡
def c ≡ λx. t

• syntax like obtain

• analogous to definition (e.g. object-logic equalities)

• old def is declared legacy

Structured statements 11

Strong vs. weak premises

• strong premises (cf. assume): show B if A1 and A2

• weak premises (cf. presume): show B when A1 and A2

• show A1 =⇒ A2 =⇒ B becomes free for re-interpretation:

have 〈A −→ B 〉

proof
show 〈B 〉 if 〈A〉 〈proof 〉 — strong premise (new in 2016)

qed

have 〈A −→ B 〉

proof
show 〈A =⇒ B 〉 〈proof 〉 — strong premise (changed in 2016)

qed

Structured statements 12

Proof structure

Simplified block structure

Nesting levels:

+ goal statement (have, show etc.)

= backwards refinement (using, apply, supply etc.)

+ proof

+ {
− }
−− qed

Some consequences:

• cases in proof methods no longer special (regular context update)

• Eisbach: match method can use generic context for bookkeeping

• Isabelle/jEdit: clarified text folding and indentation

Proof structure 14

Structured backwards refinement

〈goal〉
subgoal premises prems for x 1 x 2 . . .

〈proof 〉

Example: structured apply “scripts”

〈goal〉
subgoal by method1

subgoal by method2

done

〈goal〉
subgoal premises prems for x y using prems 〈proof 1〉
subgoal premises prems for u v w using prems 〈proof 2〉
done

Proof structure 15

Proof method facts

Used facts of method expression:

• get via dynamic fact method facts
(useful for Eisbach method definitions)

• set via method use, e.g.

(use . . . in simp)

(use . . . in 〈simp add : . . .〉)

• special fact nothing may help in odd situations

Example:

have a: A 〈proof 〉
have B by (rule r) (use a in auto)

Proof structure 16

Isar document language

Document structure

Markup

• section headings (6 levels like in HTML):
chapter, section, subsection, . . . , subparagraph

• text blocks: text, txt, text raw

• uncontrolled LATEX macros (rare)

Markdown

• implicit paragraphs and lists: itemize, enumerate, description

Isar document language 18

Document antiquotations

full form: @{name [options] arguments . . .}

short form:

1. cartouche argument: \<^name>〈argument 〉

2. no argument: \<^name>
3. standard name: 〈argument 〉

Notable examples:

• cartouche, theory text : self-presentation of Isar

• bold, emph, verbatim, footnote: text styles (with proper nesting)

• noindent, smallskip, medskip, bigskip: spacing

• cite: formal BibTEX items

• path, file, dir, url, doc: system resources

Isar document language 19

Conclusions

Conclusions

• raw proof blocks { . . . } are rarely required:
superseded by structured conclusions with if / for eigen-context

• big-bang integration of several cases “by blast” is obsolete:
superseded by consider and enhanced method cases

• integration of unstructured apply-scripts into structured proofs
works better (notably via subgoal)

• auxiliary method insert is mostly obsolete:
superseded by (use . . . in method)

• Isar document reforms make it very easy to make presentations
on the spot, without LATEX tinkering

Conclusions 21

TODO

• error-recovery according to block structure of proof document

• re-unify where / of in Eisbach vs. Pure

• re-unify atomize and atomize elim as compact

• make compact the default of automated methods

• re-unify of induct / induction and coinduct / coinduction

• eliminate induct tac, case tac, rule tac eventually

• proper HTML document output (e.g. presentations with reveal.js)

• interactive document preparation (with PIDE)

Conclusions 22

