
The Isar Proof Language in 2016

Makarius Wenzel
August 2016

http://sketis.net

Abstract

This is a description of the Isar proof language as it stands today in 2016. This means

the official release Isabelle2016 (February 2016), and the next release that is presumably pub-

lished towards the end of the year. Relevant NEWS entries and updated portions from the

Isabelle/Isar Reference Manual are summarized in one comprehensive article.

1 Introduction

The Isar proof language was originally developed between 1998 and 2001 [1], with the
aim to go beyond classic “proof scripts” and support structured proof texts or proof
documents. The original approach turned out sufficiently flexible to last many years
without significant reforms. Recently, some loose threads have been picked up again,
to address known inconveniences and limitations. Most of this renovated Isar proof
language has made it into the release Isabelle2016 (February 2016) already, but some
further refinements are for the next release.1

The example in figure 1 gives a general impression of Isar in 2016: it is not radically
different from what is already known. Note that this formalization of the Schröder-
Bernstein Theorem goes back to very early versions of Isabelle, published by Paulson
and Nipkow in the 1990s. The cover page of the Isabelle book from 1993 (Springer
LNCS 828) depicts the main proof idea. I have rewritten that in the typical Isar style
that mixes elementary rule applications and automated reasoning steps.

In the example, structured statements are written in the new notation for explicit eigen-
contexts: premises with with keyword if and parameters with keyword for. In the next
release, this will work both for toplevel statements (theorem, lemma) and within the
proof (have, show).

Moreover, inner syntax entities (types, terms, propositions) are uniformly embedded
into the outer syntax (theories) via text cartouches of the form 〈t 〉. This notation has
the potential to reduce surprise for new users of Isabelle, or bystanders in Isabelle
presentations: the funny cartouche delimiters are hardly ever seen in other languages
and thus free from associations about their meaning. Contrast this with traditional

1This paper has been processed with Isabelle/ec095a532a2b, which is temporarily available from
http://www4.in.tum.de/∼wenzelm/test/Isabelle 15-Aug-2016.

http://sketis.net
http://www4.in.tum.de/~wenzelm/test/Isabelle_15-Aug-2016

The Isar Proof Language in 2016 Makarius Wenzel

theorem Schroeder-Bernstein: 〈∃ h :: ′a ⇒ ′b. inj h ∧ surj h〉 if 〈inj f 〉 〈inj g〉

for f :: 〈 ′a ⇒ ′b〉 and g :: 〈 ′b ⇒ ′a〉

proof
define A where 〈A = lfp (λX . − (g ‘ (− (f ‘ X))))〉

define g ′ where 〈g ′ = inv g〉

let 〈?h〉 = 〈λz . if z ∈ A then f z else g ′ z 〉

have 〈A = − (g ‘ (− (f ‘ A)))〉

unfolding A-def by (rule lfp-unfold) (blast intro: monoI)
then have A-compl : 〈− A = g ‘ (− (f ‘ A))〉 by blast
then have ∗: 〈g ′ ‘ (− A) = − (f ‘ A)〉

using g ′-def 〈inj g〉 by auto

show 〈inj ?h ∧ surj ?h〉

proof
from ∗ show 〈surj ?h〉 by auto
have 〈inj-on f A〉

using 〈inj f 〉 by (rule subset-inj-on) blast
moreover
have 〈inj-on g ′ (− A)〉

unfolding g ′-def
proof (rule inj-on-inv-into)

have 〈g ‘ (− (f ‘ A)) ⊆ range g〉 by blast
then show 〈− A ⊆ range g〉 by (simp only : A-compl)

qed
moreover
have 〈False〉 if eq : 〈f a = g ′ b〉 and a: 〈a ∈ A〉 and b: 〈b ∈ − A〉 for a b
proof −

from a have fa: 〈f a ∈ f ‘ A〉 by (rule imageI)
from b have 〈g ′ b ∈ g ′ ‘ (− A)〉 by (rule imageI)
with ∗ have 〈g ′ b ∈ − (f ‘ A)〉 by simp
with eq fa show 〈False〉 by simp

qed
ultimately show 〈inj ?h〉

unfolding inj-on-def by (metis ComplI)
qed

qed

Figure 1: Example: Schröder-Bernstein Theorem

double-quotes of Isabelle, where people often ask “What are these odd string literals in
the theory source?”

Finally, the use of define instead of old def hints at unification and clarification of
of derived Isar proof elements, notably obtain and the newly introduced consider
element for multi-branch elimination rules.

2

The Isar Proof Language in 2016 Makarius Wenzel

2 Isar language syntax

The Isar proof language emerges in a bottom-up fashion from commands that may
be composed according to an interaction mode (i.e. “prove”, “state”, “chain”) and
implicit nesting of blocks. The resulting language can be described approximatively by
a conventional grammar (figure 2). This helps to get an overview, while detailed syntax
diagrams are provided for each command in the Isabelle/Isar Reference Manual [3].

Note that this presentation shares auxiliary syntax categories with the manual [3],
notably name, vars, props, thms, mixfix. Multiple items may be repeated a second
time, with keyword and as separator, but this is ignored in the grammar for simplicity:
e.g. “name: props” should be understood as “name: props and . . . and name: props”.
Names for newly introduced facts or clauses are optional. Contextual annotations,
such “if props”, “for vars”, “fixes vars”, “assumes props”, “premises name” may
be omitted.

3 Notable Isar updates

3.1 Structured statements

The main idea is to write Pure rules like 〈
∧

x . A x =⇒ B x =⇒ C x 〉 in postfix notation
〈C x 〉 if 〈A x 〉 and 〈B x 〉 for x. This emphasizes the outermost Horn-clause structure,
and imposes a natural order according to importance: conclusion, premises, parameters
(maybe with type constraints).

Structured assumptions may occur in assume, but also derived forms like define or
obtain. Here the if/for notation is turned directly into

∧
/=⇒, but vacuous quantifiers

are omitted. This is relevant for multiple conclusions, e.g. assume 〈A x 〉 and 〈B y 〉

for x y corresponds to assume 〈
∧

x . A x 〉 and 〈
∧

y . B y 〉 according to the occurrences
of the parameters in the propositions.

Structured conclusions (goals) use the if/for notation to build an eigen-context
that fixes the parameters and assumes the premises; the rule structure emerges naturally
on export of the result. This corresponds to the well-established notation for toplevel
theorem statements fixes–assumes–shows, but due to postfix notation, there is no
need for a separate keyword shows for the conclusion.

Premises may be named on the spot, e.g. if a: 〈A〉 and b: 〈B 〉. The standard name for
all premises taken together is “that”.

Here are some well-known Natural Deduction rules written as structured statements of
the command have:

• conjunction introduction:
have 〈A ∧ B 〉 if 〈A〉 and 〈B 〉

3

The Isar Proof Language in 2016 Makarius Wenzel

main = notepad begin statement∗ end
| theorem name: props if name: props for vars
| theorem name:

fixes vars
assumes name: props
shows name: props proof

| theorem name:
fixes vars
assumes name: props
obtains (name) clause | . . . proof

proof = refinement∗ proper-proof
refinement = apply method

| supply name = thms
| subgoal premises name for vars proof
| using thms
| unfolding thms

proper-proof = proof method? statement∗ qed method?

| by method method | .. | . | sorry | done
statement = { statement∗ } | next

| note name = thms
| let term = term
| write name (mixfix)
| fix vars
| assume name: props if props for vars
| presume name: props if props for vars
| define clause
| case name: case
| then? goal
| from thms goal
| with thms goal
| also | finally goal
| moreover | ultimately goal

goal = have name: props if name: props for vars proof
| show name: props if name: props for vars proof
| show name: props when name: props for vars proof
| consider (name) clause | . . . proof
| obtain (name) clause proof

clause = vars where name: props if props for vars

Figure 2: Main grammar of the Isar proof language

4

The Isar Proof Language in 2016 Makarius Wenzel

• existential introduction:
have 〈∃ x . B x 〉 if 〈B a〉 for a

• disjunction elimination:
from 〈A ∨ B 〉 have 〈C 〉 if 〈A =⇒ C 〉 and 〈B =⇒ C 〉 for C

• existential elimination:
from 〈∃ x . B x 〉 have 〈C 〉 if 〈

∧
x . B x =⇒ C 〉 for C

Here are concrete proof patterns with more concise reasoning than traditional fix–
assume–show and next blocks. E.g. iff-introduction works with a minimum of proof
blocks like this:

have 〈A ←→ B 〉

proof
show 〈B 〉 if 〈A〉 using that 〈proof 〉
show 〈A〉 if 〈B 〉 using that 〈proof 〉

qed

And this is mathematical induction in the same concise style:

have 〈P n〉 for n :: nat
proof (induct n)

show 〈P 0〉 〈proof 〉
show 〈P (Suc n)〉 if 〈P n〉 for n using that 〈proof 〉

qed

Since the eigen-context is wrapped tightly around each statement, there is no need to
indicate the block structure of sub-proofs via next or { . . . }.

Weak premises are declared via presume instead of assume. This goes back to the
most ancient stage of Isar, when premises were always weak, i.e. canonical proof de-
composition via fix–assume–show did not resolve goal premises by assumption. Since
this lead to overcrowded goal states and fragile proofs, it assume was later changed to
strong premises, and presume preserved the old behaviour for conservativity.

For orthogonality, current Isar provides when for weak premises (presume) and if for
strong premises (assume). Using the new syntax, an old proof pattern for inverted
reasoning with presume can be expressed as follows:

have 〈C 〉

proof −
show ?thesis when 〈A〉 and 〈B 〉 — eigen-context with weak premises (new in 2016)

using that by (rule 〈A =⇒ B =⇒ C 〉)
show 〈A〉 〈proof 〉
show 〈B 〉 〈proof 〉

qed

This proof pattern is not exceedingly exciting, but explicit notation for weak premises
for show 〈B 〉 when 〈A〉 means that show 〈A =⇒ B 〉 becomes free for reinterpretation in

5

The Isar Proof Language in 2016 Makarius Wenzel

the sense of strong premises. This reform of 2016 avoids typical confusion of beginners
who experiment with Isar for the first time, and expect that a subgoal A =⇒ B can be
solved with show 〈A =⇒ B 〉. Consequently, all premises in the subsequent examples
are now strong :

have 〈A −→ B 〉

proof
assume 〈A〉 — strong premise (since 1999)
show 〈B 〉 〈proof 〉

qed

have 〈A −→ B 〉

proof
show 〈B 〉 if 〈A〉 — strong premise (new in 2016)
〈proof 〉

qed

have 〈A −→ B 〉

proof
show 〈A =⇒ B 〉 — strong premise (changed in 2016)
〈proof 〉

qed

3.2 Elimination statements and cases

Elimination statements express the idea behind ∨, ∃ , ∧ by means of the Isar proof
language and the Pure logical framework. With structured statements provided as
primitive, it has become easy to introduce variations of the existing obtain command.

Multi-branch elimination is expressed by the new consider command, which is
similar to the existing theorem–obtains form:

consider (a) x where 〈A x 〉 | (b) y where 〈B y 〉 | . . .

expands to:

have 〈thesis〉

if a: 〈
∧

x . A x =⇒ thesis〉 and b: 〈
∧

y . B y =⇒ thesis〉 and . . .
for thesis

Here are some well-known Natural Deduction rules written as consider statements:

• disjunction elimination:
from 〈A ∨ B 〉 consider 〈A〉 | 〈B 〉 ..

• existential elimination:
from 〈∃ x . B x 〉 consider x where 〈B x 〉 ..

6

The Isar Proof Language in 2016 Makarius Wenzel

• conjunction elimination:
from 〈A ∧ B 〉 consider 〈A〉 and 〈B 〉 ..

Single-branch elimination still works with the well-known obtain command, which
may be rephrased via consider as follows:

obtain x where 〈A x 〉 〈proof 〉

expands to:

consider x where 〈A x 〉 〈proof 〉
fix x assume 〈A x 〉

As usual in Isar, the assumption is instrumented internally by the resulting consider
rule 〈

∧
thesis. (

∧
x . A x =⇒ thesis) =⇒ thesis〉 so that exported results get rid of the

obtained assumption (provided the auxiliary parameter x is not mentioned).

Generalized proof by cases uses a multi-branch elimination rule from consider with
the proof method cases, which has been slightly augmented to accept an elimination
rule chained into it as method fact. For example:

consider (a) A | (b) B | (c) C | (d) D 〈proof 〉
then have something
proof cases

case prems: a
from 〈A〉 show ?thesis 〈proof 〉

next
case prems: b
from 〈B 〉 show ?thesis 〈proof 〉

next
case prems: c
from 〈C 〉 show ?thesis 〈proof 〉

next
case prems: d
from 〈D 〉 show ?thesis 〈proof 〉

qed

Clausal definitions use the new command define, with the same syntax as obtain,
but more elementary equational logic behind it.

Unlike the old def command, it is also possible to present the defining equation in
applied form, similar to the definition command for theory specifications. This re-
quires an explicit eigen-context with explicit declaration of local variables. For example,
define f where 〈f x = t 〉 for x instead of old def f ≡ 〈λx . t 〉.

7

The Isar Proof Language in 2016 Makarius Wenzel

3.3 Structured goal refinements

The syntax category refinement in figure 2 admits direct operations on the goal state,
before the proper-proof is commenced. In practice there are two extremes: no refinement
followed by a structured Isar proof, or a list of non-trivial refinements followed by done
(which is formally a vacuous proof).

The latter case means that the proof degenerates into an “apply-script of the form
apply method . . . apply method done. Some “improper proof methods” were intro-
duced many years ago, to imitate adhoc access to internal goal parameters (rule-tac
etc.) and allow easy porting of old tactic scripts.

Isar in 2016 allows to recover proof structure in the middle of unstructured goal re-
finement. This works via the new subgoal command, which is closely related to the
existing concept of Isar goal focus: a given subgoal 〈

∧
x . A x =⇒ C x 〉 is decomposed

into context and conclusion, to solve it recursively via show 〈A x =⇒ C x 〉 for x (par-
tial focus on parameters) or show 〈C x 〉 if 〈A x 〉 for x (full focus on premises and
parameters).

Schematic variables in the goal state are imported into the focus context as locally
fixed variables. This means, the nested proof cannot instantiate unknowns. So logic
programming with synthesized results is not supported by this concept, but it is very
rare in practice anyway.

In summary, the subgoal command supports the following variants:

• subgoal — partial focus with anonymous parameters, i.e. the system invents
names for the goal parameters that cannot be accessed in the subsequent proof
text;

• subgoal for x y — partial focus with named parameters (prefix), i.e. the user
provides names for some parameters;

• subgoal for . . . x y — partial focus with named parameters (suffix), where the
three dots are a literal keyword of the syntax;

• subgoal premises name — full focus on parameters and premises, which are
locally assumed and accessible by the given name (optional). Often the particular
name prems is used.

Here are abstract proof patterns to illustrate nesting of proper proofs into unstructured
goal refinements:

〈goal〉
subgoal by method
subgoal by method
done

8

The Isar Proof Language in 2016 Makarius Wenzel

〈goal〉
subgoal premises prems for x y

using prems 〈proof 〉
subgoal premises prems for u v w

using prems 〈proof 〉
done

Of course, the nested proof may again start with an unstructured refinement, according
to the syntax of figure 2. This also admits hierarchically structured apply-scripts,
which are still better than totally unstructured apply-scripts.

Moreover note that a subgoal proof is subject to parallel processing as any other nested
proof of have, show, obtain, consider etc.

4 Document preparation and authoring

The ultimate purpose of the Isar proof language is to produce nicely rendered proof
documents, with good type-setting quality.

Isabelle document preparation goes back to the early years of Isar (1999): it started
out as a simple pretty-printer for Isar theories in LATEX. Over the years, it has been
continuously refined to provide more and more first-class structure managed by Isabelle.
This trend also helps the Prover IDE (Isabelle/jEdit) to support the user, see also [2].

In 2016, the main markup commands for explicit document structure are as follows:

• Section headings chapter, section, subsection, subsubsection, paragraph,
subparagraph. By default, these are mapped to standard LATEX macros of the
same name. The Prover IDE shows a corresponding tree view of the source; it is
also possible to collapse/expand text folds according to that document outline.

• Text blocks via Isar command text, txt, text-raw consisting of paragraphs of
text (with slightly different surrounding markup).

Note that these document markup commands no longer require a particular context:
they may occur anywhere, even before the initial theory header.

Document text is wrapped as text cartouche, and often nested as in text 〈abc 〈def 〉

xyz 〉. The structure of the content is as follows.

• Informal words and LATEX macros, where checking is restricted to spell-checking
in the Prover IDE (only for English).

• Special Isabelle control symbols for implicit list structure: itemize, enumerate,
description. The notation is similar to Markdown, but uses only paragraphs and
lists from its much bigger repertoire2. The Prover IDE keeps track of nested lists
and paragraphs and highlights that to the user.

2http://commonmark.org

9

http://commonmark.org

The Isar Proof Language in 2016 Makarius Wenzel

• Formal antiquotations that to refer to types, terms, theorems etc. in the text, with
formal checking and pretty-printing.

The classic antiquotation syntax @{name [options] arguments} may be abbrevi-
ated as follows, if the arguments consist of at most one text cartouche:

1. single cartouche argument: \<^name>〈argument 〉, e.g. \<^emph>〈text 〉

2. no argument: \<^name>, e.g. \<^medskip>

3. standard name cartouche: 〈argument 〉, e.g. 〈x + y 〉 that is typeset like a
formal term, but without formal checking.

Since \<^name> is notationally an Isabelle control symbol, it can be mapped
to some Unicode glyph for rendering. This makes sources visually appealing,
without providing full WYSIWYG in the text editor. The manual [4] provides
some screenshots in chapter 4. Its own sources3 may may also serve as an example:
the HTML output of Isabelle2016 approximates the PIDE editor view by using
the same font, but it lacks formal markup for sub-structures.

There are predefined antiquotations for bold, emphasize, verbatim (type writer font),
footnote, with special rendering as Isabelle symbols. This formal notation works better
than fragile LATEX macros: e.g. consider nesting of verbatim text into a footnote.

The new antiquotation called theory-text typesets fragments of Isar source (without
checking); it is frequently used this document to present snippets of Isar.

5 Summary of relevant NEWS

5.1 Isabelle2016

• Local goals (have, show) allow structured rule statements with optional eigen-
context if prems for vars.

• Assumptions (assume) allow structured statements prop if prems for vars as al-
ternative form for

∧
vars. prems =⇒ prop. Vacuous quantification in assumptions

is omitted.

• The meaning of show with Pure rule statements has changed: premises are treated
strictly in the sense of assume. This means, a goal like 〈

∧
x . A x =⇒ B x =⇒

C x 〉 can be solved completely as follows: show 〈
∧

x . A x =⇒ B x =⇒ C x 〉 or
show 〈C x 〉 if 〈A x 〉 〈B x 〉 for x.

• New command consider for generalized elimination and case splitting. This is
like a toplevel statement theorem obtains used within a proof body; or like a
multi-branch obtain without activation of the local context elements yet.

• Proof method cases allows to specify the rule as first entry of chained facts. This
is particularly useful with consider.

3http://isabelle.in.tum.de/dist/library/Doc/JEdit/JEdit.html

10

http://isabelle.in.tum.de/dist/library/Doc/JEdit/JEdit.html

The Isar Proof Language in 2016 Makarius Wenzel

• Command case allows fact name and attribute specification: case a: (c x y).

• The standard proof method of commands proof and .. is called standard instead
of old default. Documentation explains .. more accurately as by standard instead
of by rule.

• Nesting of Isar goal structure has been clarified: the context after the initial back-
wards refinement is retained for the whole proof, within all its context sections (as
indicated via next). This is e.g. relevant for using, including, supply:

• Command subgoal allows to impose some structure on backward refinements, to
avoid proof scripts degenerating into long of apply sequences.

• Command supply supports fact definitions during goal refinement (apply-
scripts).

• Proof method goal-cases turns the current subgoals into cases within the context;
the conclusion is bound to variable ?case in each case.

5.2 After Isabelle2016

• Embedded content (e.g. the inner syntax of types, terms, props) may be delimited
uniformly via cartouches. This works better than old-fashioned quotes when sub-
languages are nested.

• Command define f where 〈f x = t 〉 for x supersedes def f ≡ 〈λx . t 〉.

• Special command \<proof> is an alias for sorry, with different typesetting:
〈proof 〉.
• Proof methods may refer to the main facts via the dynamic fact method-facts.

This is particularly useful for Eisbach method definitions.

• Eisbach provides method use to modify the main facts of a given method expres-
sion, e.g. (use facts in simp) or (use facts in 〈simp add : . . . 〉).

6 Conclusion

Isar is a living language that continues to unfold and prosper. Many inconveniences
and limitations have been settled in the 2016 update. A few are left for future work,
in particular:

• Re-unification of attributes where and of in Eisbach vs. Pure — when this happens
Eisbach can be included in Pure.

• Re-unification of attributes where and atomize-elim as just one attribute, which
might be called compact and used by default as a wrapper to automated proof
methods.

11

The Isar Proof Language in 2016 Makarius Wenzel

• Re-unification of proof methods induct vs. induction, and coinduct vs. coinduc-
tion.

• Potential elimination of old tactic emulations, notably induct-tac, case-tac, or even
rule-tac and relatives.

Variants of rule-tac are typically used to bypass builtin Isar disciplines about use of
facts and (restricted) access to goal parameters. With new Eisbach spin-offs like the
command subgoal or the proof method use, there is hope to avoid such legacy tools
in the future, but it might turn out infeasible to upgrade existing applications.

Still pending is a major renovation of LATEX and HTML rendering of Isar proof docu-
ments: both should use the rich PIDE document markup for more detailed presentation.
HTML output desperately needs better typesetting quality, to get more than just syn-
tax highlighting in the browser.

References

[1] M. Wenzel. Isar — a generic interpretative approach to readable formal proof documents. In
Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving in
Higher Order Logics (TPHOLs 1999), volume 1690 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[2] M. Wenzel. Asynchronous user interaction and tool integration in Isabelle/PIDE. In
G. Klein and R. Gamboa, editors, Interactive Theorem Proving - 5th International Con-
ference, ITP 2014, Vienna, Austria, volume 8558 of Lecture Notes in Computer Science.
Springer, 2014.

[3] M. Wenzel. The Isabelle/Isar Reference Manual, February 2016. http://isabelle.in.tum.de/
doc/isar-ref.pdf.

[4] M. Wenzel. Isabelle/jEdit, February 2016. http://isabelle.in.tum.de/doc/jedit.pdf.

12

http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/jedit.pdf

	Introduction
	Isar language syntax
	Notable Isar updates
	Structured statements
	Elimination statements and cases
	Structured goal refinements

	Document preparation and authoring
	Summary of relevant NEWS
	Isabelle2016
	After Isabelle2016

	Conclusion

