Programs and Proofs in Isabelle/HOL
Example: Run-Length Encoding

Makarius Wenzel
http://sketis.net

May 2016

Isabelle: framework of
domain-specific formal languages

Logic:
Isabelle/Pure: Logical framework and bootstrap environment
Isabelle/HOL: Theories and tools for applications

Programming:
Isabelle/ML: Tool implementation (Poly/ML)
Isabelle/Scala: System integration (JVM)

Proof:

Isabelle/lIsar: Intelligible semi-automated reasoning
Document preparation: IATEX type-setting of proof text

Isabelle/ML: tool implementation language

e based on Poly/ML (David Matthews, Edinburgh)

e SML'97: strict functional programming + exceptions
e SML’'90: interrupts

e parallel evaluation via futures (implemented via Poly /ML threads)
e immutable data managed within logical context
e statically checked antiquotations

Example

ML (
fun conj 0 = @{term True}
| conj 1 = @{term A :: bool}
| conj n = @Q{term op AN} $ conj 1 $ conj (n — 1);
)
ML (writeln (Syntaz.string_of-term @{context} (conj 7)))

“Programming” in Isabelle/HOL

Quasi-programming in HOL.:
1. define conventional types: tuples, records, recursive datatypes
2. define recursive functions over types (with well-formedness proofs)

3. simulate computation via equational reasoning:
(a) term rewriting within the logic (Simplifier)
(b) symbolic normalization by evaluation (NBE)
(c) actual evaluation via code-generator:
HOL subset is translated to SML, OCaml, Scala, Haskell

Warning:

e Not every computer language is a programming language!

e HOL is classic set-theory — more than a programming language.

e HOL is based on total functions — less convenient than common
programming languages.

Examples

e See also documentation prog—prove:
"Programming and Proving in Isabelle/HOL" (Tobias Nipkow)

e $ISABELLE_HOME/src/HOL/ex/Seq.thy

export_code conc in SML
export_code conc in OCaml
export_code conc in Scala
export_code conc in Haskell

e Run Length Encoding: RLE. thy

