
Programs and Proofs
in Isabelle/HOL

Makarius Wenzel
http://sketis.net

March 2016

λ
→

∀
=Is

ab
el
le

β

α

Introduction

What is Isabelle?

Hanabusa Itchō: “Blind monks examining an elephant”

Introduction 2

History: LCF Prover Family

LCF: Logic + Meta Language (since 1979)
Edinburgh LCF
Cambridge LCF

HOL (since 1988)
ProofPower
HOL4
HOL-Light
HOL Zero

Coq (since 1985)
Coq 8.5 (January 2016)

Isabelle (since 1986)
Isabelle2016 (February 2016)

Introduction 3

Isabelle: framework of
domain-specific formal languages

Logic:

Isabelle/Pure: Logical framework and bootstrap environment

Isabelle/HOL: Theories and tools for applications

Programming:

Isabelle/ML: Tool implementation (Poly/ML)

Isabelle/Scala: System integration (JVM)

Proof:

Isabelle/Isar: Intelligible semi-automated reasoning

Document preparation: LATEX type-setting of proof text

Introduction 4

Document preparation

Structure markup

• section headings: chapter, section, subsection, etc.

• text blocks: text

• implicit lists (cf. Markdown): itemize, enumerate, description

• free-form LATEX macros

Antiquotations

full form: @{name [options] arguments . . .}

short form:

1. cartouche argument: \<^name>〈argument 〉

2. no argument: \<^name>

Example: �this document�

Introduction 5

Prover IDE: Isabelle/jEdit

• asynchronous

interaction

• continuous

checking

• parallel

processing

Introduction 6

Programs in Isabelle

Isabelle/ML: tool implementation language

• based on Poly/ML (David Matthews, Edinburgh)

• SML’97: strict functional programming + exceptions

• SML’90: interrupts

• parallel evaluation via futures (implemented via Poly/ML threads)

• immutable data managed within logical context

• statically checked antiquotations

Example
ML 〈

fun conj 0 = @{term True}
| conj 1 = @{term A :: bool}
| conj n = @{term op ∧} $ conj 1 $ conj (n − 1);

〉

ML 〈writeln (Syntax .string of term @{context} (conj 7))〉

Programs in Isabelle 8

Isabelle/ML: IDE

Programs in Isabelle 9

Isabelle/ML: debugger

Programs in Isabelle 10

Isabelle/Scala: system programming language

• Standard Scala 2.11 (running on Java 8)

• Isabelle/Scala programming style imitates Isabelle/ML

• duplication of some libraries on both sides

• differentiation for system front-end technology

private
protocolAPI API

S
ca

la

M
L

ML threads

ML futures

POSIX processesPOSIX processes

Java threads

Scala futures

TCP/IP servers

MLScala

JVM bridge

Programs in Isabelle 11

“Programming” in Isabelle/HOL

Warning:

• Not every computer language is a programming language!

• HOL is classic set-theory — more than a programming language.

• HOL is based on total functions — less convenient than common
programming languages.

Quasi-programming in HOL:

1. define conventional types: tuples, records, recursive datatypes

2. define recursive functions over types (with well-formedness proofs)

3. simulate computation via equational reasoning:
(a) term rewriting within the logic (Simplifier)

(b) symbolic normalization by evaluation (NBE)

(c) actual evaluation via code-generator:

HOL subset is translated to SML, OCaml, Scala, Haskell

Programs in Isabelle 12

Examples

• $ISABELLE_HOME/src/HOL/ex/Seq.thy

export code conc in SML
export code conc in OCaml
export code conc in Scala
export code conc in Haskell

• Run Length Encoding: RLE.thy

• See also documentation prog−prove:
”Programming and Proving in Isabelle/HOL” (Tobias Nipkow)

Programs in Isabelle 13

Proofs in Isabelle

Structured Proofs

Natural Deduction: (Gentzen 1935)

A −→ B A
B

[A]....
B

A −→ B

Isabelle/Pure rules: (Paulson 1989)

(A −→ B) =⇒ A =⇒ B (A =⇒ B) =⇒ A −→ B

Isabelle/Isar proofs: (Wenzel 1999)
have A −→ B 〈proof 〉
also have A 〈proof 〉
finally have B .

have A −→ B

proof
assume A

then show B 〈proof 〉
qed

Proofs in Isabelle 15

Rules for predicate logic (1)

theorem impI : (A =⇒ B) =⇒ A −→ B

theorem mp: A −→ B =⇒ A =⇒ B

theorem allI : (
∧

x . B x) =⇒ ∀ x . B x

theorem spec: ∀ x . B x =⇒ B a

theorem exI : B a =⇒ ∃ x . B x

theorem exE : ∃ x . B x =⇒ (
∧

a. B a =⇒ C) =⇒ C

theorem conjI : A =⇒ B =⇒ A ∧ B

theorem conjE : A ∧ B =⇒ (A =⇒ B =⇒ C) =⇒ C

theorem disjI1: A =⇒ A ∨ B

theorem disjI2: B =⇒ A ∨ B

theorem disjE : A ∨ B =⇒ (A =⇒ C) =⇒ (B =⇒ C) =⇒ C

Proofs in Isabelle 16

Rules for predicate logic (2)

theorem TrueI : True

theorem FalseE : False =⇒ C

theorem notI : (A =⇒ False) =⇒ ¬ A

theorem notE : ¬ A =⇒ A =⇒ C

theorem iffI : (A =⇒ B) =⇒ (B =⇒ A) =⇒ A ←→ B

theorem iffD1: A ←→ B =⇒ A =⇒ B

theorem iffD2: A ←→ B =⇒ B =⇒ A

Proofs in Isabelle 17

Examples

theorem curry: (A ∧ B −→ C) −→ (A −→ B −→ C) 〈proof 〉

theorem iff contradiction: ¬ A ←→ A =⇒ C 〈proof 〉

Proofs in Isabelle 18

Example proof patterns: induction and calculation

theorem fixes n :: nat shows P n

proof (induct n)

case 0

show P 0 〈proof 〉
next

case (Suc n)

then show P (Suc n) 〈proof 〉
qed

notepad
begin

have a = b 〈proof 〉
also have . . . = c 〈proof 〉
also have . . . = d 〈proof 〉
finally have a = d .

end

Proofs in Isabelle 19

Example proof: induction × calculation

theorem
fixes n :: nat

shows (
∑

i=0..n. i) = n ∗ (n + 1) div 2

proof (induct n)

case 0

have (
∑

i=0..0. i) = (0::nat) by simp

also have . . . = 0 ∗ (0 + 1) div 2 by simp

finally show ?case .
next

case (Suc n)

have (
∑

i=0..Suc n. i) = (
∑

i=0..n. i) + (n + 1) by simp

also have . . . = n ∗ (n + 1) div 2 + (n + 1) by (simp add : Suc.hyps)

also have . . . = (n ∗ (n + 1) + 2 ∗ (n + 1)) div 2 by simp

also have . . . = (Suc n ∗ (Suc n + 1)) div 2 by simp

finally show ?case .
qed

Proofs in Isabelle 20

Examples

• ~~/src/HOL/Isar_Examples/First_Order_Logic.thy

• ~~/src/HOL/Isar_Examples/Higher_Order_Logic.thy

• ~~/src/HOL/Isar_Examples/Cantor.thy

• ~~/src/HOL/Isar_Examples/Schroeder_Bernstein.thy

Proofs in Isabelle 21

Conclusion

Happy proving!

See you on http://afp.sf.net

The Archive of Formal Proofs

Conclusion 23

http://afp.sf.net

