Programs and Proofs in Isabelle/HOL

Makarius Wenzel http://sketis.net

March 2016

Introduction

What is Isabelle?

Hanabusa Itchō: "Blind monks examining an elephant"

Introduction

History: LCF Prover Family

LCF: Logic + Meta Language (since 1979) 🚟 Edinburgh LCF Cambridge LCF HOL (since 1988) 🚟 🔤 ProofPower HOL4 HOL-Light HOL Zero **Coq** (since 1985) Coq 8.5 (January 2016) Isabelle (since 1986) 🏭 💻 🛄 🔛 Isabelle2016 (February 2016)

Isabelle: framework of domain-specific formal languages

Logic:

Isabelle/Pure: Logical framework and bootstrap environment **Isabelle/HOL:** Theories and tools for applications

Programming:

Isabelle/ML: Tool implementation (Poly/ML) **Isabelle/Scala:** System integration (JVM)

Proof:

Isabelle/Isar: Intelligible semi-automated reasoning **Document preparation:** LATEX type-setting of proof text

Document preparation

Structure markup

- section headings: chapter, section, subsection, etc.
- text blocks: text
- implicit lists (cf. Markdown): itemize, enumerate, description
- free-form LATEX macros

Antiquotations

full form: @{name [options] arguments ...} short form:

- 1. cartouche argument: $\langle argument \rangle$
- 2. no argument: \<^*name*>

Example: »*this document*«

Prover IDE: Isabelle/jEdit

- asynchronous interaction
- continuous checking
- parallel processing

•	Seq.thy	
-] 🚍 🕭 : 🚳 : 🏂 🥐 : 🔏 🗊 📋 : 👧 🚷 : 🗂 🔀 🗟 : 🐁 : 🌘	2 :
	Seq.thy (\$ISABELLE_ROOT/src/HOL/ex/)	🔄 🖪 isabelle 🗘
	section <finite sequences=""></finite>	Filter:
Q	theory Seq imports Main begin	Seq.thy ▼ section <finite sequences→<br="">theory Seq datatype 'a seq = Empty Seq 'a ''a sec fun conc :: "'a seq ⇒ 'a seq" fun reverse :: "'a seq ⇒ 'a seq" lamma conc asse: "conc (conc xys) z: lamma conc asse: "conc (conc xys) z:</finite>
	datatype 'a seq = Empty Seq 'a "'a seq"	lamma reverse_conc: "reverse (conc xs) lamma reverse_reverse: "reverse (revers
Θ	fun conc :: "'a seq \Rightarrow 'a seq \Rightarrow 'a seq"	
	where	
	"conc Empty ys = ys"	
L	"conc (Seq x xs) ys = Seq x (conc xs ys)"	
Θ	fun reverse where "reverse ===================================	
L	Teverse (sed x xs) = conc (reverse xs) (sed x Linpty)	
P	<pre>lemma conc_empty: "conc xs Empty = xs" by (induct xs) simp_all</pre>	
	Proof state 🗹 Auto update Update Search: 💌 100% 💌	
	constants conc :: "'a seq ⇒ 'a seq ⇒ 'a seq"	
	Found termination order: "(λ p. size (fst p)) <*mlex*> {}"	
_		
4	• Output	
13	,39 (200/789) (isabelle,UTF-8-Is	abelle)NmroUG 154/495MB 4:46 PM

Programs in Isabelle

Isabelle/ML: tool implementation language

- based on Poly/ML (David Matthews, Edinburgh)
- SML'97: strict functional programming + exceptions
- SML'90: interrupts
- parallel evaluation via futures (implemented via Poly/ML threads)
- immutable data managed within logical context
- statically checked antiquotations

Example

```
ML \langle fun \ conj \ 0 = @\{term \ True\} \\ | \ conj \ 1 = @\{term \ A :: \ bool\} \\ | \ conj \ n = @\{term \ op \ \wedge\} \ \$ \ conj \ 1 \ \$ \ conj \ (n - 1); \rangle
```

ML $\langle writeln (Syntax.string_of_term @{context} (conj 7)) \rangle$

Programs in Isabelle

Isabelle/ML: IDE

Programs in Isabelle

Isabelle/ML: debugger

💿 😑 💿 💿 Scratch.thy (mod	ified)	
	5 : 🔍 💥 : 👍 : 🔞 : 🌲 🔶	
Scratch.thy (~/)		
<pre>declare [[ML_debugger = true]]</pre>		
P ML <		
fun-factorial n =		
if $n = 0$ then 1		
else <mark>n</mark> * factorial (n - 1)		
L >		
<pre>ML <factorial 10=""></factorial></pre>		
Break Continue Step Step over Step out Context:	▼ ML:	
	Eval SML Search: 70% 🔻	
<pre>Intreads Vertical vorker/11 Intreads Vertical vorker/</pre>		
actorial factorial		
factorial		
factorial		
factorial		
factorial ?		
□	(icaballa icaballa UTE-8-Icaballa)Nm co UC 66/405MB 7:29 DM	

Isabelle/Scala: system programming language

- Standard Scala 2.11 (running on Java 8)
- Isabelle/Scala programming style imitates Isabelle/ML
- duplication of some libraries on both sides
- differentiation for system front-end technology

"Programming" in Isabelle/HOL

Warning:

- Not every computer language is a programming language!
- HOL is classic set-theory more than a programming language.
- HOL is based on total functions less convenient than common programming languages.

Quasi-programming in HOL:

- 1. define conventional types: tuples, records, recursive datatypes
- 2. define recursive functions over types (with well-formedness proofs)
- 3. simulate computation via equational reasoning:
 - (a) term rewriting within the logic (Simplifier)
 - (b) symbolic normalization by evaluation (NBE)
 - (c) actual evaluation via code-generator:
 HOL subset is translated to SML, OCaml, Scala, Haskell

Examples

- \$ISABELLE_HOME/src/HOL/ex/Seq.thy export_code conc in SML export_code conc in OCaml export_code conc in Scala export_code conc in Haskell
- Run Length Encoding: RLE.thy
- See also documentation *prog*-*prove*: "Programming and Proving in Isabelle/HOL" (Tobias Nipkow)

Proofs in Isabelle

Structured Proofs

Natural Deduction: (Gentzen 1935)

$$\frac{A \longrightarrow B \quad A}{B} \qquad \frac{\begin{bmatrix} A \end{bmatrix}}{\stackrel{\vdots}{\stackrel{\vdots}{B}}}{A \longrightarrow B}$$

Isabelle/Pure rules: (Paulson 1989)

 $(A \longrightarrow B) \Longrightarrow A \Longrightarrow B \qquad (A \Longrightarrow B) \Longrightarrow A \longrightarrow B$

Isabelle/Isar proofs: (Wenzel 1999)

have $A \longrightarrow B \ \langle proof \rangle$ have $A \longrightarrow B$ also have $A \ \langle proof \rangle$ prooffinally have B.assume Athen show $B \ \langle proof \rangle$ qed

Rules for predicate logic (1)

theorem $impI: (A \Longrightarrow B) \Longrightarrow A \longrightarrow B$ theorem $mp: A \longrightarrow B \Longrightarrow A \Longrightarrow B$

theorem allI: $(\bigwedge x. B x) \Longrightarrow \forall x. B x$ theorem spec: $\forall x. B x \Longrightarrow B a$

theorem $exI: B a \Longrightarrow \exists x. B x$ theorem $exE: \exists x. B x \Longrightarrow (\bigwedge a. B a \Longrightarrow C) \Longrightarrow C$

theorem $conjI: A \Longrightarrow B \Longrightarrow A \land B$ theorem $conjE: A \land B \Longrightarrow (A \Longrightarrow B \Longrightarrow C) \Longrightarrow C$

theorem $disjI1: A \Longrightarrow A \lor B$ theorem $disjI2: B \Longrightarrow A \lor B$ theorem $disjE: A \lor B \Longrightarrow (A \Longrightarrow C) \Longrightarrow (B \Longrightarrow C) \Longrightarrow C$

Proofs in Isabelle

Rules for predicate logic (2)

theorem *TrueI*: *True* theorem *FalseE*: *False* \implies *C*

theorem *notI*: $(A \Longrightarrow False) \Longrightarrow \neg A$ **theorem** *notE*: $\neg A \Longrightarrow A \Longrightarrow C$

theorem *iffI*: $(A \Longrightarrow B) \Longrightarrow (B \Longrightarrow A) \Longrightarrow A \longleftrightarrow B$ theorem *iffD*1: $A \longleftrightarrow B \Longrightarrow A \Longrightarrow B$ theorem *iffD*2: $A \longleftrightarrow B \Longrightarrow B \Longrightarrow A$

Examples

theorem curry: $(A \land B \longrightarrow C) \longrightarrow (A \longrightarrow B \longrightarrow C) \ \langle proof \rangle$

theorem *iff_contradiction*: $\neg A \leftrightarrow A \Longrightarrow C \ \langle proof \rangle$

Example proof patterns: induction and calculation

```
theorem fixes n :: nat shows P n
proof (induct n)
case 0
show P \ 0 \ \langle proof \rangle
next
case (Suc n)
then show P \ (Suc n) \ \langle proof \rangle
qed
```

```
notepad
begin
have a = b \langle proof \rangle
also have \ldots = c \langle proof \rangle
also have \ldots = d \langle proof \rangle
finally have a = d.
end
```

Proofs in Isabelle

Example proof: induction \times calculation

theorem

```
fixes n :: nat
 shows (\sum i=0..n. i) = n * (n + 1) div 2
proof (induct n)
 case 0
 have (\sum i=0..0. i) = (0::nat) by simp
 also have \ldots = 0 * (0 + 1) \operatorname{div} 2 by \operatorname{simp}
 finally show ?case .
next
 case (Suc n)
 have (\sum i=0...Suc \ n. \ i) = (\sum i=0...n. \ i) + (n + 1) by simp
 also have \ldots = n * (n + 1) div 2 + (n + 1) by (simp add: Suc.hyps)
 also have \ldots = (n * (n + 1) + 2 * (n + 1)) div 2 by simp
 also have \ldots = (Suc \ n * (Suc \ n + 1)) \ div \ 2 by simp
 finally show ?case .
qed
```

Proofs in Isabelle

Examples

- ~~/src/HOL/Isar_Examples/First_Order_Logic.thy
- ~~/src/HOL/Isar_Examples/Higher_Order_Logic.thy
- ~~/src/HOL/Isar_Examples/Cantor.thy
- ~~/src/HOL/Isar_Examples/Schroeder_Bernstein.thy

Conclusion

Happy proving!

See you on http://afp.sf.net The Archive of Formal Proofs