The Isar Proof Language in 2016

Makarius Wenzel http://sketis.net

February 2016

Introduction

Isabelle: framework of domain-specific formal languages

Logic:

Isabelle/Pure: Logical framework and bootstrap environment **Isabelle/HOL:** Theories and tools for applications

Programming:

Isabelle/ML: Tool implementation (Poly/ML) **Isabelle/Scala:** System integration (JVM)

Proof:

Isabelle/Isar: Intelligible semi-automated reasoning **Document language:** LATEX type-setting of proof text

Document language

Structure markup

- section headings (6 levels like in HTML):
 chapter, section, subsection, . . . , subparagraph
- text blocks: text
- implicit lists (cf. Markdown): itemize, enumerate, description
- uncontrolled LATEX macros

Antiquotations

full form: @{name [options] arguments ...}
short form:

- 1. cartouche argument: \<^*name>\argument*>
- 2. no argument: \<^*name*>
- 3. standard name: (*argument*)

Isar Proof Language

Structured proofs

Natural Deduction: (Gentzen, 1935)

$$\frac{A \longrightarrow B \quad A}{B} \qquad \frac{\begin{bmatrix} A \end{bmatrix}}{\stackrel{\vdots}{B}}{\stackrel{B}{A \longrightarrow B}}$$

Isabelle/Pure rules: (Paulson 1989)

 $(A \longrightarrow B) \Longrightarrow A \Longrightarrow B \qquad (A \Longrightarrow B) \Longrightarrow A \longrightarrow B$

Isabelle/Isar proofs: (Wenzel 1999)

assume $A \longrightarrow B$ have $A \longrightarrow B$ also have $A \ \langle proof \rangle$ prooffinally have B.assume Athen show $B \ \langle proof \rangle$ qed

Structured rule statements (conclusions)

Horn-clause post-fix notation: "Eigen-context"

- premises: have B if A_1 and A_2 ... (default fact name: *that*)
- parameters: have B for a_1 and a_2 ...

Examples:

- conjunction introduction: have $A \land B$ if A and B
- existential introduction:
 have ∃ x. B x if B a for a
- disjunction elimination: from $\langle A \lor B \rangle$ have C if $A \implies C$ and $B \implies C$ for C
- existential elimination: from $(\exists x. B x)$ have C if $\bigwedge x. B x \implies C$ for C

Weak premises

- strong premises: have B if A_1 and A_2 ...
- weak premises: have B when A_1 and A_2 ...

```
Example: suffices-to-show
```

```
have C

proof –

show C when A and B

using that by (rule \langle A \implies B \implies C \rangle)

show A sorry

show B sorry

qed
```

Note:

• show $A_1 \Longrightarrow A_2 \ldots \Longrightarrow B$ becomes free for re-interpretation: \longrightarrow strong premises

Structured assumptions

- assume B if A_1 and A_2 ... for $a_1 a_2 \ldots$
 - corresponds to $\bigwedge a_1 \ a_2 \ \ldots \ A_1 \Longrightarrow A_2 \ \ldots \Longrightarrow B$
 - vacuous quantifiers are omitted

Future potential for this notation:

- locale expressions (fixes-assumes)
- long theorem statements (fixes-assumes-shows/obtains)
- inductive definitions, e.g.
 inductive_set star :: ('a × 'a) set ⇒ ('a × 'a) set (_* [100] 100)
 for R :: ('a × 'a) set
 where
 base: (x, x) ∈ R* for x
 | step: (x, z) ∈ R* if (x, y) ∈ R and (y, z) ∈ R* for x y z

Elimination statements

consider \overline{x} where $\overline{A} \ \overline{x} | \overline{y}$ where $\overline{B} \ \overline{y} | \ldots \equiv$ have thesis if $\bigwedge \overline{x}$. $\overline{A} \ \overline{x} \Longrightarrow$ thesis and $\bigwedge \overline{y}$. $\overline{B} \ \overline{y} \Longrightarrow$ thesis for thesis

Examples:

- existential elimination:
 from ⟨∃ x. B x⟩ consider x where B x
- conjunction elimination: from $\langle A \land B \rangle$ consider A and B
- disjunction elimination:
 from ⟨A ∨ B⟩ consider A | B

Elimination and cases

- method "cases" detects its rule from chained facts
- command "case" allows name and attribute specification

Example:

```
consider A | B | C \lapha proof \rangers
then have something
proof cases
  case prems: 1
  show ?thesis using prems \lapha proof \rangers
  next
  case prems: 2
  show ?thesis using prems \lapha proof \rangers
  next
  case prems: 3
  show ?thesis using prems \lapha proof \rangers
  qed
```

Obtain

```
obtain \overline{x} where \overline{A} \ \overline{x} \ \langle proof \rangle \equiv
consider \overline{x} where \overline{A} \ \overline{x} \ \langle proof \rangle
fix \overline{x} assume* \overline{A} \ \overline{x}
```

- meaning is unchanged, but definition simplified
- is patterns are supported (with λ -lifting over the parameters)

Block structure of proofs

Nesting levels:

- + goal statement (have, show etc.)
- = backwards refinement (using, apply, supply etc.)
- + proof
- $+ \{ \}$
- $-^2$ qed

Some consequences:

- cases in proof methods no longer special (regular context update)
- Eisbach: *match* method can use generic context for bookkeeping
- PIDE: clarified text folding (indentation still missing)

Structured backwards refinement

 $\langle goal \rangle$ subgoal premises *prems* for $x_1 x_2 \dots$ $\langle proof \rangle$

Example: structured proof scripts

```
\langle goal \rangle

subgoal by method_1

subgoal by method_2

done

\langle goal \rangle

subgoal premises prems for x \ y

using prems \ \langle proof_1 \rangle

subgoal premises prems for u \ v \ w

using prems \ \langle proof_2 \rangle

done
```

Eisbach: high-level proof procedures (D. Matichuk et al)

Proof method definitions:

- abstraction over terms and facts:
 method m for x y uses a b = method_body[m, x, y, a, b]
- abstraction over facts, with declaration in the context:
 method m declares a = method_body[m]
- abstraction over other methods:
 method m methods m₁ m₂ = method_body[m, m₁, m₂]

Method *match*:

- goal introspection with pattern matching
- subgoal focus (similar to **subgoal** command)
- control of backtracking

Conclusion

TODO

- proper HTML document output
- interactive document preparation
- re-unify *where*, *of* in Eisbach vs. Pure
- re-unify *atomize* and *atomize_elim* as *compact*
- make *compact* the default of automated methods
- re-unify of *induct / induction*, *coinduct / coinduction*
- eliminate *induct_tac*, *case_tac*, *rule_tac* eventually
- de-emphasize redundant hence, thus

Conclusion

The more it advances, the less it is finished!