
The Isar Proof Language
in 2016

Makarius Wenzel
http://sketis.net

February 2016

λ
→

∀
=Is

ab
el
le

β

α

Isar

Introduction

Isabelle: framework of
domain-specific formal languages

Logic:

Isabelle/Pure: Logical framework and bootstrap environment

Isabelle/HOL: Theories and tools for applications

Programming:

Isabelle/ML: Tool implementation (Poly/ML)

Isabelle/Scala: System integration (JVM)

Proof:

Isabelle/Isar: Intelligible semi-automated reasoning

Document language: LATEX type-setting of proof text

Introduction 2

Document language

Structure markup

• section headings (6 levels like in HTML):
chapter, section, subsection, . . . , subparagraph

• text blocks: text

• implicit lists (cf. Markdown): itemize, enumerate, description

• uncontrolled LATEX macros

Antiquotations

full form: @{name [options] arguments . . .}

short form:

1. cartouche argument: \<^name>〈argument 〉

2. no argument: \<^name>
3. standard name: 〈argument 〉

Introduction 3

Isar Proof Language

Structured proofs

Natural Deduction: (Gentzen, 1935)

A −→ B A
B

[A]....
B

A −→ B

Isabelle/Pure rules: (Paulson 1989)

(A −→ B) =⇒ A =⇒ B (A =⇒ B) =⇒ A −→ B

Isabelle/Isar proofs: (Wenzel 1999)
assume A −→ B

also have A 〈proof 〉
finally have B .

have A −→ B

proof
assume A

then show B 〈proof 〉
qed

Isar Proof Language 5

Structured rule statements (conclusions)

Horn-clause post-fix notation: “Eigen-context”

• premises: have B if A1 and A2 . . .
(default fact name: that)

• parameters: have B for a1 and a2 . . .

Examples:

• conjunction introduction:
have A ∧ B if A and B

• existential introduction:
have ∃ x . B x if B a for a

• disjunction elimination:
from 〈A ∨ B 〉 have C if A =⇒ C and B =⇒ C for C

• existential elimination:
from 〈∃ x . B x 〉 have C if

∧
x . B x =⇒ C for C

Isar Proof Language 6

Weak premises

• strong premises: have B if A1 and A2 . . .

• weak premises: have B when A1 and A2 . . .

Example: suffices-to-show
have C

proof −
show C when A and B

using that by (rule 〈A =⇒ B =⇒ C 〉)

show A sorry
show B sorry

qed

Note:

• show A1 =⇒ A2 . . . =⇒ B becomes free for re-interpretation:
−→ strong premises

Isar Proof Language 7

Structured assumptions

• assume B if A1 and A2 . . . for a1 a2 . . .

– corresponds to
∧
a1 a2 A1 =⇒ A2 . . . =⇒ B

– vacuous quantifiers are omitted

Future potential for this notation:

• locale expressions (fixes–assumes)

• long theorem statements (fixes–assumes–shows/obtains)

• inductive definitions, e.g.
inductive set star :: (′a × ′a) set ⇒ (′a × ′a) set (? [100] 100)

for R :: (′a × ′a) set

where
base: (x , x) ∈ R? for x

| step: (x , z) ∈ R? if (x , y) ∈ R and (y, z) ∈ R? for x y z

Isar Proof Language 8

Elimination statements

consider x where A x | y where B y | . . . ≡
have thesis

if
∧
x. A x =⇒ thesis

and
∧
y. B y =⇒ thesis

for thesis

Examples:

• existential elimination:
from 〈∃ x . B x 〉 consider x where B x

• conjunction elimination:
from 〈A ∧ B 〉 consider A and B

• disjunction elimination:
from 〈A ∨ B 〉 consider A | B

Isar Proof Language 9

Elimination and cases

• method “cases” detects its rule from chained facts

• command “case” allows name and attribute specification

Example:
consider A | B | C 〈proof 〉
then have something

proof cases

case prems: 1

show ?thesis using prems 〈proof 〉
next

case prems: 2

show ?thesis using prems 〈proof 〉
next

case prems: 3

show ?thesis using prems 〈proof 〉
qed

Isar Proof Language 10

Obtain

obtain x where A x 〈proof 〉 ≡
consider x where A x 〈proof 〉
fix x assume∗ A x

• meaning is unchanged, but definition simplified

• is patterns are supported (with λ-lifting over the parameters)

Isar Proof Language 11

Block structure of proofs

Nesting levels:

+ goal statement (have, show etc.)

= backwards refinement (using, apply, supply etc.)

+ proof

+ {
− }
−2 qed

Some consequences:

• cases in proof methods no longer special (regular context update)

• Eisbach: match method can use generic context for bookkeeping

• PIDE: clarified text folding (indentation still missing)

Isar Proof Language 12

Structured backwards refinement

〈goal〉
subgoal premises prems for x 1 x 2 . . .

〈proof 〉

Example: structured proof scripts
〈goal〉

subgoal by method1

subgoal by method2

done

〈goal〉
subgoal premises prems for x y

using prems 〈proof 1〉
subgoal premises prems for u v w

using prems 〈proof 2〉
done

Isar Proof Language 13

Eisbach: high-level proof procedures
(D. Matichuk et al)

Proof method definitions:

• abstraction over terms and facts:
method m for x y uses a b = method body [m, x , y , a, b]

• abstraction over facts, with declaration in the context:
method m declares a = method body [m]

• abstraction over other methods:
method m methods m1 m2 = method body [m, m1, m2]

Method match:

• goal introspection with pattern matching

• subgoal focus (similar to subgoal command)

• control of backtracking

Isar Proof Language 14

Conclusion

TODO

• proper HTML document output

• interactive document preparation

• re-unify where, of in Eisbach vs. Pure

• re-unify atomize and atomize elim as compact

• make compact the default of automated methods

• re-unify of induct / induction, coinduct / coinduction

• eliminate induct tac, case tac, rule tac eventually

• de-emphasize redundant hence, thus

Conclusion 16

Conclusion

The more it advances, . . .

. . . the less it is finished!

Conclusion 17

