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Abstract

Isabelle was introduced in 1989 (by L. Paulson) as a generic logical framework for higher-order
natural deduction. Intelligible semi-automated reasoning (Isar) was introduced in 1999 (by M.
Wenzel) as a structured proof language for human-readable formal proof documents. Today, in
December 2015, we see large applications of Isabelle/Isar in the Isabelle/HOL object-logic, e.g. in
the Archive of Formal Proofs (http://afp.sf.net) with more than 240 entries.

After so many years, development of Isar is still not finished. Recent refinements of old concepts
and additions of new concepts include: structured rule statements (Eigen-contexts), multi-branch
elimination (case-splitting), structured backwards refinement. The new Eisbach language (by D.
Matichuk et al) allows to define complex proof methods in their usual syntax, instead of traditional
Isabelle/ML. Sledgehammer (by J. Blanchette et al) allows to generate semi-intelligible Isar proofs
from machine-generated proofs (via external ATPs and SMTs).

The ultimate aim of Isabelle/Isar is to turn the results of formal proof production into mathematical
documents with nice type-setting. Document source was mainly written in LaTeX in the past, but
is now moving towards Markdown, with specific GUI support in the Prover IDE (Isabelle/jEdit).
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Introduction



What is Isabelle?

Hanabusa Itchō: “Blind monks examining an elephant”
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History: LCF Prover Family

LCF (since 1979)
Edinburgh LCF
Cambridge LCF

HOL (since 1988)
ProofPower
HOL4
HOL-Light
HOL Zero

Coq (since 1985)
Coq 8.4pl6 (April 2015)

Isabelle (since 1986)
Isabelle2015 (May 2015)
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Isabelle: framework of
domain-specific formal languages

Logic:

Isabelle/Pure: Logical framework and bootstrap environment

Isabelle/HOL: Theories and tools for applications

Programming:

Isabelle/ML: Tool implementation (Poly/ML)

Isabelle/Scala: System integration (JVM)

Proof:

Isabelle/Isar: Intelligible semi-automated reasoning

Document preparation: LATEX type-setting of proof text
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Structured Proofs

Natural Deduction: (Gentzen, 1935)

A −→ B A
B

[A]....
B

A −→ B

Isabelle/Pure rules: (Paulson 1989)

(A −→ B) =⇒ A =⇒ B (A =⇒ B) =⇒ A −→ B

Isabelle/Isar proofs: (Wenzel 1999)
assume A −→ B

also have A 〈proof 〉
finally have B .

have A −→ B

proof
assume A

then show B 〈proof 〉
qed
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Isar principles

Ultimate goal: human-readable formal proof documents

Notions of proof:

Primitive proof term (internal inferences)

Primary proof text (concrete syntax and structure)

Presentation proof document (pretty-printing and type-setting)

Isar language characteristics:

• interpreted language of proof expressions:
context elements, flow of facts towards goals

• built-in reduction to Pure rule composition

• add-on proof methods (defined in library)

−→ bottom-up emergence from existing Isabelle concepts
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Example proof patterns: induction and calculation

theorem fixes n :: nat shows P n

proof (induct n)

case 0

show P 0 〈proof 〉
next

case (Suc n)

then show P (Suc n) 〈proof 〉
qed

notepad
begin

have a = b 〈proof 〉
also have . . . = c 〈proof 〉
also have . . . = d 〈proof 〉
finally have a = d .

end
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Example proof: induction × calculation

theorem
fixes n :: nat

shows (
∑

i=0..n. i) = n ∗ (n + 1) div 2

proof (induct n)

case 0

have (
∑

i=0..0. i) = (0::nat) by simp

also have . . . = 0 ∗ (0 + 1) div 2 by simp

finally show ?case .
next

case (Suc n)

have (
∑

i=0..Suc n. i) = (
∑

i=0..n. i) + (n + 1) by simp

also have . . . = n ∗ (n + 1) div 2 + (n + 1) by (simp add : Suc.hyps)

also have . . . = (n ∗ (n + 1) + 2 ∗ (n + 1)) div 2 by simp

also have . . . = (Suc n ∗ (Suc n + 1)) div 2 by simp

finally show ?case .
qed
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Isabelle/Pure: declarative rules



Theory and proof context

Logical judgement:

Θ, Γ ` ϕ

• background theory Θ
(polymorphic types, constants, axioms; global data)

• proof context Γ (fixed variables, assumptions; local data)

Operations on theories:

• merge and extend: Θ3 = Θ1 ∪ Θ2 + τ + c :: τ + c ≡ t

• symbolic sub-theory relation: Θ1 ⊆ Θ2

• transfer of results: if Θ1 ⊆ Θ2 and Θ1, Γ ` ϕ then Θ2, Γ ` ϕ
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Primitive inferences

Syntax (types and terms):

fun :: (type, type)type function space ′a ⇒ ′b
all :: ( ′a ⇒ prop) ⇒ prop universal quantification

∧
x :: ′a. B x

imp :: prop ⇒ prop ⇒ prop implication A =⇒ B

Derivations (theorems): implicit theory Θ

A ∈ Θ
` A

(axiom)
A ` A

(assume)

Γ ` B [x ] x /∈ Γ

Γ `
∧

x . B [x ]
(
∧

-intro)
Γ `

∧
x . B [x ]

Γ ` B [a]
(
∧

-elim)

Γ ` B
Γ − A ` A =⇒ B

(=⇒-intro)
Γ1 ` A =⇒ B Γ2 ` A

Γ1 ∪ Γ2 ` B
(=⇒-elim)
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Object-logic rules

Main principles: (Paulson 1989)

• Pure syntax is notation for rules in Natural Deduction

logical entailment: A1 =⇒ . . . An =⇒ B represents
A1 . . . An

B

local parameter:
∧

x . B x represents “eigen-variable” condition

• Declarative rule composition via:

– back-chaining
– lifting into subgoal context
– higher-order unification (G. Huet, D. Miller).

−→ Isabelle/Pure reasoning similar to λ-Prolog

Isabelle/Pure: declarative rules 13



Inferences for rule composition

A =⇒ B B ′=⇒ C B θ = B ′θ
A θ =⇒ C θ

(compose)

A =⇒ B
(H =⇒ A) =⇒ (H =⇒ B)

(=⇒-lift)

A a =⇒ B a
(
∧
x. A (a x)) =⇒ (

∧
x. B (a x))

(
∧

-lift)

rule: A a =⇒ B a

goal : (
∧
x. H x =⇒ B ′ x) =⇒ C

goal unifier : (λx. B (a x)) θ = B ′θ

(
∧
x. H x =⇒ A (a x)) θ =⇒ C θ

(resolution)

goal : (
∧
x. H x =⇒ A x) =⇒ C

assm unifier : A θ = H i θ (for some H i)

C θ
(assumption)
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Isabelle/Isar: proof context



Notepad for logical entities

— background theory Θ

notepad
begin
— proof context Γ

Terms:
let ?f = λx . x — term binding (abbreviation)

let + ?b = ?f a + b — pattern matching

let ?g = ?f ?f — Hindler-Milner polymorphism

Facts:
note rules = sym refl trans — collective facts

note a = rules(2) — selection

note b = this — implicit result this

end
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Context elements: rules from text

Universal context: fix and assume

{
fix x

have B x 〈proof 〉
}
note 〈

∧
x . B x 〉

{
assume A

have B 〈proof 〉
}
note 〈A =⇒ B 〉

Existential context: obtain

{
obtain a where B a 〈proof 〉
have C 〈proof 〉
}
note 〈C 〉
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Structured rule statements (within theory)

Long theorem statement:

• context elements: fixes a1 and a2 . . . assumes A1 and A2 . . .

• conclusion: shows B

• indirect conclusion: obtains a where B a
“may assume that B a holds for some abstract a”

theorem exists intro:

fixes B :: ′a ⇒ bool and a :: ′a

assumes B a

shows ∃ x . B x

theorem exists elim:

fixes B :: ′a ⇒ bool

assumes ∃ x . B x

obtains a :: ′a where B a
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Structured rule statements (within proof)

Horn-clause post-fix notation: “Eigen-context”

• premises: have B if A1 and A2 . . .

• parameters: have B for a1 and a2 . . .

Examples:

• conjunction introduction:
have A ∧ B if A and B

• existential introduction:
have ∃ x . B x if B a for a

• disjunction elimination:
from 〈A ∨ B 〉 have C if A =⇒ C and B =⇒ C for C

• existential elimination:
from 〈∃ x . B x 〉 have C if

∧
x . B x =⇒ C for C
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Elimination statements (within proof)

consider x where A x | y where B y | . . . ≡
have thesis

if
∧
x. A x =⇒ thesis

and
∧
y. B y =⇒ thesis

for thesis

Examples:

• existential elimination:
from 〈∃ x . B x 〉 consider x where B x

• conjunction elimination:
from 〈A ∧ B 〉 consider A and B

• disjunction elimination:
from 〈A ∨ B 〉 consider A | B
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Examples:

notepad
begin

assume A1 ∨ A2 ∨ A3 ∨ A4

then consider A1 | A2 | A3 | A4

by blast

next
assume A1 ∧ B1 ∨ A2 ∧ B2 ∧ C 2

then consider A1 and B1 | A2 and B2 and C 2

by blast

next
assume (∃ x y. A x ∧ B y) ∨ (∃ z . C z)

then consider a b where A a and B b | z where C z

by blast

end
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Isabelle/Isar: structured proofs



Proof decomposition

Structured proof outline:

from facts1 have props using facts2

proof (initial method)
body

qed (terminal method)

Solving sub-problems: within body

fix vars
assume props
show props 〈proof 〉

or:

show props if props for vars 〈proof 〉
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Proof decomposition as Pure inference

have
∧
x. H x =⇒ B ′ x

proof −
fix a
assume G a

show B a 〈proof 〉
qed

subgoal : (
∧
x. H x =⇒ B ′ x) =⇒ C

subproof : G a =⇒ B a for schematic a

concl unifier : (λx. B (a x)) θ = B ′θ

assm unifiers: (λx. Gj (a x)) θ = H i θ for each Gj some H i

C θ
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Example

notepad
begin

fix A B :: bool

have A ∧ B −→ B ∧ A

proof (rule impI )

assume ∗: A ∧ B

show B ∧ A

proof (rule conjI )

show B proof (rule conjunct2 [OF ∗]) qed
show A proof (rule conjunct1 [OF ∗]) qed

qed
qed

end
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Terminal proofs

Canonical double-step proofs:

have prop
proof (initial method)
qed (terminal method)

or: have prop by (initial method) (terminal method)

Single-step proofs:

by fact
by this ≡ .
by rule ≡ ..

Skipped proofs:

sorry
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Using facts

Goal statement with facts:

from facts1 have prop using facts2

proof (initial method)
body

qed (terminal method)

• initial method sees facts1 facts2 as primary argument

• actual use of facts depends on proof method,
e.g. rule, cases, induct, auto

Abbreviations and synonyms:

from this ≡ then
from a ≡ note a then
with a ≡ note a and this then
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Mixed forward-backward reasoning (1)

notepad
begin

assume r : A1 =⇒ A2 =⇒ B1 =⇒ B2 =⇒ B3 =⇒ C

have A1 and A2 〈proof 〉
then have C

proof (rule r)

show B1 〈proof 〉
show B2 〈proof 〉
show B3 〈proof 〉

qed
end
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Mixed forward-backward reasoning (2)

notepad
begin

assume r : A =⇒ (
∧

x . H 1 x =⇒ B1 x) =⇒ (
∧

y. H 2 y =⇒ B2 y) =⇒ C

have A 〈proof 〉
then have C

proof (rule r)

show B1 x if H 1 x for x 〈proof 〉
show B2 y if H 2 y for y 〈proof 〉

qed
end
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Calculational reasoning

also0 ≡ note calculation = this

alson+1 ≡ note calculation = trans [OF calculation this]
finally ≡ also from calculation

moreover ≡ note calculation = calculation this

ultimately ≡ moreover from calculation

Example:
notepad
begin

have a = b 〈proof 〉
also have . . . = c 〈proof 〉
also have . . . = d 〈proof 〉
finally have a = d .

end

notepad
begin

have A 〈proof 〉
moreover have B 〈proof 〉
moreover have C 〈proof 〉
ultimately have A and B and C .

end

Note:

term “. . .” abbreviates the argument of the last statement
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Induction

using facts

proof (induct insts arbitrary: vars rule: fact)

Example:
notepad
begin

fix n :: nat and x :: ′a have P n x

proof (induct n arbitrary: x)

case 0

show P 0 x 〈proof 〉
next

case (Suc n)

from 〈P n a〉 show P (Suc n) x 〈proof 〉
qed

end
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Generalized elimination

obtain x where B x 〈proof 〉 ≡
have reduction:

∧
thesis. (

∧
x. B x =⇒ thesis) =⇒ thesis 〈proof 〉

fix x assume �eliminate reduction� B x

Γ `
∧

thesis. (
∧
x. B x =⇒ thesis) =⇒ thesis

Γ ∪ B x ` C

Γ ` C
(eliminate)

Example:
notepad
begin

assume ∃ x . B x

then obtain x where B x ..
end

notepad
begin

assume A ∧ B

then obtain A and B ..
end
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Structured backwards refinement

〈goal〉
subgoal premises prems for x 1 x 2 . . .

〈proof 〉

Example: structured proof scripts
〈goal〉

subgoal by method1

subgoal by method2

done

〈goal〉
subgoal premises prems for x y

using prems 〈proof 1〉
subgoal premises prems for u v w

using prems 〈proof 2〉
done
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Isabelle/HOL: theory specifications



Types

• augmented version of Simple Theory of Types (Church 1940)

• schematic polymorphism (weaker than ML let-polymorphism)

• basic types: bool, nat, ′a ⇒ ′b (full function space)

Type specifications:

• typedef semantic subtype of existing type

• quotient type wrt. equivalence relation or PER

• record extensible records (glorified tuples)

• datatype and codatatype (Bounded Natural Functors)

datatype ′a list = Nil | Cons (hd : ′a) (tl : ′a list)

codatatype ′a stream = Stream (HD: ′a) (TL: ′a stream)
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Functions and constants

• abbreviation: abstract syntax definitions

abbreviation (input) double :: nat ⇒ nat

where double n ≡ 2 ∗ n

• definition: simple non-recursive definitions

definition square :: nat ⇒ nat

where square n = n ∗ n

• fun and function / termination: general recursion with
implicit or explicit termination proof

fun fibonacci :: nat ⇒ nat

where
fibonacci 0 = 0

| fibonacci (Suc 0) = 1

| fibonacci (Suc (Suc n)) = fibonacci n + fibonacci (Suc n)
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Inductive predicates and sets

• inductive and coinductive: Knaster-Tarski fixed-points over pred-
icates or sets

inductive set star ( ? [100] 100) for R :: ( ′a × ′a) set

where
base: (x , x) ∈ R?

| step: (x , y) ∈ R =⇒ (y, z) ∈ R? =⇒ (x , z) ∈ R?

This means R? is the least relation (set of pairs) that is closed under the

introduction rules above. The following induction rule is provided:

(x 1, x 2) ∈ R? =⇒
(
∧

x . P x x) =⇒
(
∧

x y z . (x , y) ∈ R =⇒ (y, z) ∈ R? =⇒ P y z =⇒ P x z) =⇒ P x 1 x 2
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Type classes

• Predicate over constant signature with single type-variable

• Integrated into type-system: order-sorted algebra of constraints

• Class intersections are called sorts

• Class inclusion hierarchy: by definition or proof

• Class instantiation by concrete types

class zero = fixes zero :: ′a (0)

class one = fixes one :: ′a (1)

class times = fixes times :: ′a ⇒ ′a ⇒ ′a (infixl ∗ 70)

class group = times + one + inverse +

assumes group assoc: (x ∗ y) ∗ z = x ∗ (y ∗ z)

and group left one: 1 ∗ x = x

and group left inverse: inverse x ∗ x = 1
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Example: class hierarchy

class deps type monoid add
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Isabelle/HOL proof methods

• rule: generic Natural Deduction (with HO unification)

• cases: elimination, syntactic representation of datatypes,
inversion of inductive sets and predicates

• induct and coinduct: induction and coinduction of types, sets,
predicates

• simp: equational reasoning by the Simplifier (HO rewriting),
with possibilities for add-on tools

• fast and blast: classical reasoning (tableau)

• auto and force: combined simplification and classical reasoning

• arith, presburger: specific theories

• smt: Z3 with proof reconstruction
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Additional tool support



Isabelle/jEdit Prover IDE (2015)

• asynchronous

interaction

• continuous

checking

• parallel

processing
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Sledgehammer (J. Blanchette et al)

• heavy external ATPs / SMTs for proof search

• light internal ATP (Metis) for proof reconstruction
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Example: semi-intelligible automated reasoning

sledgehammer [isar proofs]

• proof redirection: classical contradiction of negated conclusion
 proof of conclusion

• treatment of Skolemization vs. Isar obtain x where B x

• post-processing for legibility and efficiency of proof-checking

−→ some high-level tracing of ATPs

−→ truly intelligible proofs require manual rewriting
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Automated disprovers — counter examples

• nitpick based on relational model finder

• quickcheck based on random functional evaluation
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Eisbach: high-level proof procedures
(D. Matichuk et al)

Proof method definitions:

• abstraction over terms and facts:
method m for x y uses a b = method body [m, x , y , a, b]

• abstraction over facts, with declaration in the context:
method m declares simp = method body [m]

• abstraction over other methods:
method m methods m1 m2 = method body [m, m1, m2]

Method match:

• goal introspection with pattern matching

• subgoal focus (similar to subgoal command)

• control of backtracking
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Document preparation

Structure markup

• section headings: chapter, section, subsection, etc.

• text blocks: text

• implicit lists (cf. Markdown): itemize, enumerate, description

• free-form LATEX macros

Antiquotations

full form: @{name [options] arguments . . .}

short form:

1. cartouche argument: \<^name>〈argument 〉

2. no argument: \<^name>

Example: �this document�
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Isabelle tool implementation



Isabelle/ML

Characteristics:

• SML’97: strict functional programming + exceptions

• SML’90: interrupts

• Poly/ML (by David Matthews) as main implementation;
SML/NJ now impractical

• parallel evaluation via futures (implemented via Poly/ML threads)

• immutable data managed within logical context

Notes:

• Isabelle/ML library useful for advanced functional programming

• Isabelle/jEdit serves as IDE for Isabelle/ML and Standard ML
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Isabelle/ML IDE support

Isabelle/ML/PIDE:

• precise tokenization (syntax-highlighting etc.)

• spell-checking inside comments

• antiquotations

• text cartouches with formal position

• source-level debugger
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Poly/ML IDE support

Poly/ML 5.5.2:

• inferred types for sub-expressions

• defining positions of referenced entities

• information about ML structures and open scopes

• pretty-printing of ML values with markup

Poly/ML repository (November 2015):

• completion

• breakpoints for debugging
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Isabelle/Scala/PIDE architecture: conceptual view

Editor: JVM Prover: MLDocument
model

API API
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PIDE architecture: implementation view

private
protocolAPI API

S
ca

la

M
L

ML threads

ML futures

POSIX processesPOSIX processes

Java threads

Scala futures

TCP/IP servers

MLScala

JVM bridge

Design principles:

• private protocol for prover connectivity
(asynchronous interaction, parallel evaluation)

• public Scala API
(timeless, stateless, static typing)
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Markup reports

Problem: round-trip through several sophisticated syntax layers

Solution: execution trace with markup reports

text text

term

re
po
rtre

po
rt

position
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Conclusion



What is Isabelle?

The more it advances, . . .

. . . the less it is finished!
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