Intelligible semi-automated reasoning in December 2015

Makarius Wenzel http://sketis.net

Abstract

Isabelle was introduced in 1989 (by L. Paulson) as a generic logical framework for higher-order natural deduction. Intelligible semi-automated reasoning (Isar) was introduced in 1999 (by M. Wenzel) as a structured proof language for human-readable formal proof documents. Today, in December 2015, we see large applications of Isabelle/Isar in the Isabelle/HOL object-logic, e.g. in the Archive of Formal Proofs (http://afp.sf.net) with more than 240 entries.

After so many years, development of Isar is still not finished. Recent refinements of old concepts and additions of new concepts include: structured rule statements (Eigen-contexts), multi-branch elimination (case-splitting), structured backwards refinement. The new Eisbach language (by D. Matichuk et al) allows to define complex proof methods in their usual syntax, instead of traditional Isabelle/ML. Sledgehammer (by J. Blanchette et al) allows to generate semi-intelligible Isar proofs from machine-generated proofs (via external ATPs and SMTs).

The ultimate aim of Isabelle/Isar is to turn the results of formal proof production into mathematical documents with nice type-setting. Document source was mainly written in LaTeX in the past, but is now moving towards Markdown, with specific GUI support in the Prover IDE (Isabelle/jEdit).

Introduction

What is Isabelle?

Hanabusa Itchō: "Blind monks examining an elephant"

Introduction

History: LCF Prover Family

LCF (since 1979) **...** Edinburgh LCF Cambridge LCF HOL (since 1988) 🚟 🔤 ProofPower HOL4 HOL-Light HOL Zero **Coq** (since 1985) Coq 8.4pl6 (April 2015) Isabelle (since 1986) 🚟 💻 💷 Isabelle2015 (May 2015)

Isabelle: framework of domain-specific formal languages

Logic:

Isabelle/Pure: Logical framework and bootstrap environment **Isabelle/HOL:** Theories and tools for applications

Programming:

Isabelle/ML: Tool implementation (Poly/ML) **Isabelle/Scala:** System integration (JVM)

Proof:

Isabelle/Isar: Intelligible semi-automated reasoning **Document preparation:** LATEX type-setting of proof text

Structured Proofs

Natural Deduction: (Gentzen, 1935)

$$\frac{A \longrightarrow B \quad A}{B} \qquad \frac{\begin{bmatrix} A \end{bmatrix}}{\stackrel{\vdots}{B}}{\stackrel{B}{A \longrightarrow B}}$$

Isabelle/Pure rules: (Paulson 1989)

 $(A \longrightarrow B) \Longrightarrow A \Longrightarrow B \qquad (A \Longrightarrow B) \Longrightarrow A \longrightarrow B$

Isabelle/Isar proofs: (Wenzel 1999)

assume $A \longrightarrow B$ have $A \longrightarrow B$ also have $A \ \langle proof \rangle$ prooffinally have B.assume Athen show $B \ \langle proof \rangle$ qed

Isar principles

Ultimate goal: human-readable formal proof documents **Notions of proof:**

Primitive proof term (internal inferences)Primary proof text (concrete syntax and structure)Presentation proof document (pretty-printing and type-setting)

Isar language characteristics:

- interpreted language of proof expressions: context elements, flow of facts towards goals
- built-in reduction to Pure rule composition
- add-on proof methods (defined in library)
- \longrightarrow bottom-up emergence from existing Isabelle concepts

Example proof patterns: induction and calculation

```
theorem fixes n :: nat shows P n
proof (induct n)
case 0
show P \ 0 \ \langle proof \rangle
next
case (Suc n)
then show P \ (Suc n) \ \langle proof \rangle
qed
```

```
notepad
begin
have a = b \langle proof \rangle
also have \ldots = c \langle proof \rangle
also have \ldots = d \langle proof \rangle
finally have a = d.
end
```

Introduction

Example proof: induction \times calculation

theorem

```
fixes n :: nat
 shows (\sum i=0..n. i) = n * (n + 1) div 2
proof (induct n)
 case 0
 have (\sum i=0..0. i) = (0::nat) by simp
 also have \ldots = 0 * (0 + 1) \operatorname{div} 2 by \operatorname{simp}
 finally show ?case .
next
 case (Suc n)
 have (\sum i=0...Suc \ n. \ i) = (\sum i=0...n. \ i) + (n + 1) by simp
 also have \ldots = n * (n + 1) div 2 + (n + 1) by (simp add: Suc.hyps)
 also have \ldots = (n * (n + 1) + 2 * (n + 1)) div 2 by simp
 also have \ldots = (Suc \ n * (Suc \ n + 1)) \ div \ 2 by simp
 finally show ?case .
qed
```

Introduction

Isabelle/Pure: declarative rules

Theory and proof context

Logical judgement:

$$\Theta,\,\Gamma\vdash\varphi$$

- background theory Θ
 (polymorphic types, constants, axioms; global data)
- proof context Γ (fixed variables, assumptions; local data)

Operations on theories:

- merge and extend: $\Theta_3 = \Theta_1 \cup \Theta_2 + \tau + c :: \tau + c \equiv t$
- symbolic sub-theory relation: $\Theta_1 \subseteq \Theta_2$
- transfer of results: if $\Theta_1 \subseteq \Theta_2$ and Θ_1 , $\Gamma \vdash \varphi$ then Θ_2 , $\Gamma \vdash \varphi$

Primitive inferences

Syntax (types and terms):

fun :: (type, type)type $imp :: prop \Rightarrow prop \Rightarrow prop$ implication $A \Longrightarrow B$

function space $a \Rightarrow b$ $all :: ('a \Rightarrow prop) \Rightarrow prop$ universal quantification $\bigwedge x :: 'a. B x$

Derivations (theorems): implicit theory Θ

$$\frac{A \in \Theta}{\vdash A} (axiom) \qquad \overline{A \vdash A} (assume)$$

$$\frac{\Gamma \vdash B[x] \quad x \notin \Gamma}{\Gamma \vdash \Lambda x. \ B[x]} (\Lambda \text{-intro}) \qquad \frac{\Gamma \vdash \Lambda x. \ B[x]}{\Gamma \vdash B[a]} (\Lambda \text{-elim})$$

$$\frac{\Gamma \vdash B}{\Gamma - A \vdash A \Longrightarrow B} (\Longrightarrow \text{-intro}) \qquad \frac{\Gamma_1 \vdash A \Longrightarrow B \ \Gamma_2 \vdash A}{\Gamma_1 \cup \Gamma_2 \vdash B} (\Longrightarrow \text{-elim})$$

Isabelle/Pure: declarative rules

Object-logic rules

Main principles: (Paulson 1989)

• Pure syntax is notation for rules in Natural Deduction

logical entailment: $A_1 \implies \dots A_n \implies B$ represents $\frac{A_1 \dots A_n}{B}$ **local parameter:** $\bigwedge x$. B x represents "eigen-variable" condition

- Declarative rule composition via:
 - back-chaining
 - lifting into subgoal context
 - higher-order unification (G. Huet, D. Miller).
- \longrightarrow Isabelle/Pure reasoning similar to $\lambda\text{-}\mathsf{Prolog}$

Inferences for rule composition

$$\frac{\overline{A} \Longrightarrow B \quad B' \Longrightarrow C \quad B \ \theta = B' \theta}{\overline{A} \ \theta \Longrightarrow C \ \theta} (compose)$$

$$\frac{\overline{A} \Longrightarrow B}{(\overline{H} \Longrightarrow \overline{A}) \Longrightarrow (\overline{H} \Longrightarrow B)} (\Longrightarrow -lift)$$

$$\frac{\overline{A} \ \overline{a} \Longrightarrow B \ \overline{a}}{(\bigwedge \overline{x}. \ \overline{A} \ (\overline{a} \ \overline{x})) \Longrightarrow (\bigwedge \overline{x}. \ B \ (\overline{a} \ \overline{x}))} (\land -lift)$$

$$\begin{array}{cccc}
 rule: & \overline{A} \ \overline{a} \Longrightarrow B \ \overline{a} \\
 goal: & (\bigwedge \overline{x}. \ \overline{H} \ \overline{x} \Longrightarrow B' \ \overline{x}) \Longrightarrow C \\
 goal unifier: & (\lambda \overline{x}. \ B \ (\overline{a} \ \overline{x})) \ \theta = B' \theta \\
 \hline
 (\bigwedge \overline{x}. \ \overline{H} \ \overline{x} \Longrightarrow \overline{A} \ (\overline{a} \ \overline{x})) \ \theta \Longrightarrow C \ \theta
\end{array} (resolution)$$

$$goal: \quad (\bigwedge \overline{x}. \ \overline{H} \ \overline{x} \Longrightarrow A \ \overline{x}) \Longrightarrow C$$

$$assm unifier: \quad A \ \theta = H_i \ \theta \ (for some \ H_i)$$

$$C \ \theta \qquad (assumption)$$

Isabelle/Isar: proof context

Notepad for logical entities

- background theory Θ notepad begin - proof context Γ

Terms:

let $?f = \lambda x. x$ — term binding (abbreviation) **let** _ + ?b = ?f a + b — pattern matching **let** ?g = ?f ?f — Hindler-Milner polymorphism

Facts:

note $rules = sym \ refl \ trans$ — collective facts **note** a = rules(2) — selection **note** b = this — implicit result this

end

Context elements: rules from text

Universal context: fix and assume

 $\begin{cases} \{ & \{ \\ fix \ x & assume \ A \\ have \ B \ x \ \langle proof \rangle & have \ B \ \langle proof \rangle \\ \} & \\ note \ \langle \bigwedge x. \ B \ x \rangle & note \ \langle A \Longrightarrow B \rangle \end{cases}$

Existential context: obtain

```
{

obtain a where B \ a \ \langle proof \rangle

have C \ \langle proof \rangle

}

note \langle C \rangle
```

Structured rule statements (within theory)

Long theorem statement:

- context elements: fixes a_1 and a_2 ... assumes A_1 and A_2 ...
- conclusion: shows B
- indirect conclusion: obtains *a* where *B a* "may assume that *B a* holds for some abstract *a*"

```
theorem exists\_intro:

fixes B :: 'a \Rightarrow bool and a :: 'a

assumes B a

shows \exists x. B x

theorem exists\_elim:

fixes B :: 'a \Rightarrow bool

assumes \exists x. B x

obtains a :: 'a where B a
```

Structured rule statements (within proof)

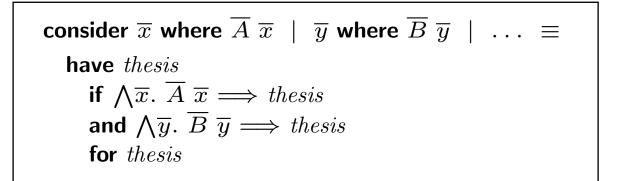
Horn-clause post-fix notation: "Eigen-context"

- premises: have B if A_1 and A_2 ...
- parameters: have B for a_1 and a_2 ...

Examples:

- conjunction introduction: have $A \land B$ if A and B
- existential introduction:
 have ∃ x. B x if B a for a
- disjunction elimination: from $\langle A \lor B \rangle$ have C if $A \implies C$ and $B \implies C$ for C
- existential elimination: from $(\exists x. B x)$ have C if $\bigwedge x. B x \implies C$ for C

Elimination statements (within proof)



Examples:

- existential elimination:
 from ⟨∃ x. B x⟩ consider x where B x
- conjunction elimination: from $\langle A \land B \rangle$ consider A and B
- disjunction elimination:
 from ⟨A ∨ B⟩ consider A | B

Examples:

```
notepad
begin
 assume A_1 \lor A_2 \lor A_3 \lor A_4
 then consider A_1 \mid A_2 \mid A_3 \mid A_4
   by blast
next
  assume A_1 \wedge B_1 \vee A_2 \wedge B_2 \wedge C_2
 then consider A_1 and B_1 \mid A_2 and B_2 and C_2
   by blast
next
 assume (\exists x y. A x \land B y) \lor (\exists z. C z)
 then consider a \ b where A \ a and B \ b \mid z where C \ z
   by blast
end
```

Isabelle/Isar: structured proofs

Proof decomposition

Structured proof outline:

from facts1 have props using facts2
proof (initial_method)
 body
qed (terminal_method)

Solving sub-problems: within *body*

```
fix vars
assume props
show props \langle proof \rangle
or:
```

```
show props if props for vars \langle proof \rangle
```

Proof decomposition as Pure inference

have
$$\bigwedge \overline{x}$$
. $\overline{H} \ \overline{x} \Longrightarrow B' \overline{x}$
proof –
fix \overline{a}
assume $\overline{G} \ \overline{a}$
show $\overline{B} \ \overline{a} \ \langle proof \rangle$
qed

$$subgoal: \quad (\bigwedge \overline{x}. \ \overline{H} \ \overline{x} \Longrightarrow B' \ \overline{x}) \Longrightarrow C$$

$$subproof: \quad \overline{G} \ \overline{a} \Longrightarrow B \ \overline{a} \quad \text{for schematic } \overline{a}$$

$$concl unifier: \quad (\lambda \overline{x}. \ B \ (\overline{a} \ \overline{x})) \ \theta = B' \theta$$

$$assm unifiers: \quad (\lambda \overline{x}. \ G_j \ (\overline{a} \ \overline{x})) \ \theta = H_i \ \theta \quad \text{for each } G_j \ \text{some } H_i$$

$$C \ \theta$$

Example

```
notepad
begin
fix A \ B :: bool
have A \land B \longrightarrow B \land A
proof (rule impI)
assume *: A \land B
show B \land A
proof (rule conjI)
show B proof (rule conjunct2 [OF *]) qed
show A proof (rule conjunct1 [OF *]) qed
qed
qed
end
```

Terminal proofs

Canonical double-step proofs:

have prop
proof (initial_method)
qed (terminal_method)

or: have prop by (initial_method) (terminal_method)

Single-step proofs:

- by fact by this \equiv .
- by $rule \equiv ...$

Skipped proofs:

sorry

Using facts

Goal statement with facts:

```
from facts1 have prop using facts2
proof (initial_method)
    body
qed (terminal_method)
```

- $initial_method$ sees $facts_1$ $facts_2$ as primary argument
- actual use of facts depends on proof method, e.g. *rule*, *cases*, *induct*, *auto*

Abbreviations and synonyms:

from this	\equiv	then
from a	\equiv	note a then
with a	\equiv	note a and this then

Mixed forward-backward reasoning (1)

```
notepad
begin
assume r: A_1 \Longrightarrow A_2 \Longrightarrow B_1 \Longrightarrow B_2 \Longrightarrow B_3 \Longrightarrow C
have A_1 and A_2 \ \langle proof \rangle
then have C
proof (rule r)
show B_1 \ \langle proof \rangle
show B_2 \ \langle proof \rangle
show B_3 \ \langle proof \rangle
qed
end
```

Mixed forward-backward reasoning (2)

notepad begin assume $r: A \Longrightarrow (\bigwedge x. H_1 x \Longrightarrow B_1 x) \Longrightarrow (\bigwedge y. H_2 y \Longrightarrow B_2 y) \Longrightarrow C$ have $A \ \langle proof \rangle$ then have Cproof (rule r)show $B_1 x$ if $H_1 x$ for $x \ \langle proof \rangle$ show $B_2 y$ if $H_2 y$ for $y \ \langle proof \rangle$

end

qed

Calculational reasoning

$also_0$	\equiv	note $calculation = this$
$also_{n+1}$	\equiv	note calculation = trans $[OF \ calculation \ this]$
finally	\equiv	also from <i>calculation</i>
moreover	\equiv	note calculation $=$ calculation this
ultimately	\equiv	moreover from <i>calculation</i>

Example:

notepad	notepad
begin	begin
have $a = b \langle proof \rangle$	have $A \ \langle proof \rangle$
also have $\ldots = c \; \langle proof \rangle$	moreover have $B \langle proof \rangle$
also have $\ldots = d \ \langle proof \rangle$	moreover have $C \langle proof \rangle$
finally have $a = d$.	ultimately have A and B and C .
end	end

Note:

term "..." abbreviates the argument of the last statement

Induction

using *facts*

proof (induct insts arbitrary: vars rule: fact)

Example:

```
notepad
begin
fix n :: nat and x :: 'a have P n x
proof (induct n \ arbitrary: x)
case 0
show P \ 0 x \ \langle proof \rangle
next
case (Suc \ n)
from \langle P \ n \ a \rangle show P \ (Suc \ n) x \ \langle proof \rangle
qed
end
```

Generalized elimination

obtain \overline{x} where $\overline{B} \ \overline{x} \ \langle proof \rangle \equiv$ have reduction: $\land thesis. (\land \overline{x}. \ \overline{B} \ \overline{x} \Longrightarrow thesis) \Longrightarrow thesis \ \langle proof \rangle$ fix \overline{x} assume $\ll eliminate \ reduction \gg \overline{B} \ \overline{x}$ $\Gamma \vdash \land thesis. (\land \overline{x}. \ \overline{B} \ \overline{x} \Longrightarrow thesis) \Longrightarrow thesis$ $\Gamma \cup \overline{B} \ \overline{x} \vdash C$ $\Gamma \vdash C$ (eliminate)

Example:

notepad begin assume $\exists x. B x$ then obtain x where B x.. end notepad begin assume $A \wedge B$ then obtain A and B ... end

Structured backwards refinement

 $\langle goal \rangle$ subgoal premises *prems* for $x_1 x_2 \dots$ $\langle proof \rangle$

Example: structured proof scripts

```
\langle goal \rangle

subgoal by method_1

subgoal by method_2

done

\langle goal \rangle

subgoal premises prems for x \ y

using prems \ \langle proof_1 \rangle

subgoal premises prems for u \ v \ w

using prems \ \langle proof_2 \rangle

done
```

Isabelle/HOL: theory specifications

Types

- augmented version of Simple Theory of Types (Church 1940)
- schematic polymorphism (weaker than ML let-polymorphism)
- basic types: *bool*, *nat*, $'a \Rightarrow 'b$ (full function space)

Type specifications:

- typedef semantic subtype of existing type
- quotient_type wrt. equivalence relation or PER
- record extensible records (glorified tuples)
- datatype and codatatype (Bounded Natural Functors)

datatype 'a list = Nil | Cons (hd: 'a) (tl: 'a list) codatatype 'a stream = Stream (HD: 'a) (TL: 'a stream)

Functions and constants

• abbreviation: abstract syntax definitions

abbreviation (*input*) double :: $nat \Rightarrow nat$ where double $n \equiv 2 * n$

• **definition**: simple non-recursive definitions

definition square :: $nat \Rightarrow nat$ where square n = n * n

• fun and function / termination: general recursion with implicit or explicit termination proof

```
fun fibonacci :: nat \Rightarrow nat

where

fibonacci 0 = 0

| fibonacci (Suc 0) = 1

| fibonacci (Suc (Suc n)) = fibonacci n + fibonacci (Suc n)
```

Inductive predicates and sets

• **inductive** and **coinductive**: Knaster-Tarski fixed-points over predicates or sets

inductive_set star ($_{\star}$ [100] 100) for $R :: ('a \times 'a)$ set where base: $(x, x) \in R \star$ | step: $(x, y) \in R \Longrightarrow (y, z) \in R \star \Longrightarrow (x, z) \in R \star$

This means $R\star$ is the least relation (set of pairs) that is closed under the introduction rules above. The following induction rule is provided:

$$(x_1, x_2) \in R \star \Longrightarrow$$

$$(\bigwedge x. P x x) \Longrightarrow$$

$$(\bigwedge x y z. (x, y) \in R \Longrightarrow (y, z) \in R \star \Longrightarrow P y z \Longrightarrow P x z) \Longrightarrow P x_1 x_2$$

Type classes

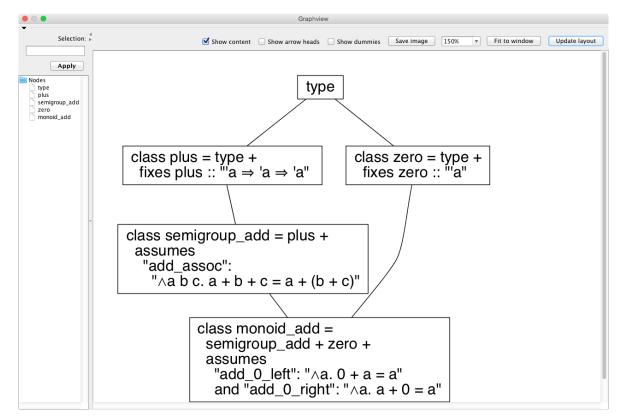
- Predicate over constant signature with single type-variable
- Integrated into type-system: order-sorted algebra of constraints
- Class intersections are called sorts
- Class inclusion hierarchy: by definition or proof
- Class instantiation by concrete types

```
class zero = fixes zero :: 'a (0)
class one = fixes one :: 'a (1)
class times = fixes times :: 'a \Rightarrow 'a \Rightarrow 'a (infix! * 70)
```

```
class group = times + one + inverse +
assumes group\_assoc: (x * y) * z = x * (y * z)
and group\_left\_one: 1 * x = x
and group\_left\_inverse: inverse x * x = 1
```

Example: class hierarchy

class_deps type monoid_add



Isabelle/HOL proof methods

- rule: generic Natural Deduction (with HO unification)
- cases: elimination, syntactic representation of datatypes, inversion of inductive sets and predicates
- induct and coinduct: induction and coinduction of types, sets, predicates
- simp: equational reasoning by the Simplifier (HO rewriting), with possibilities for add-on tools
- fast and blast: classical reasoning (tableau)
- auto and force: combined simplification and classical reasoning
- arith, presburger: specific theories
- smt: Z3 with proof reconstruction

Additional tool support

Isabelle/jEdit Prover IDE (2015)

- asynchronous interaction
- continuous checking
- parallel processing



Sledgehammer (J. Blanchette et al)

- heavy external ATPs / SMTs for proof search
- light internal ATP (Metis) for proof reconstruction

💿 😑 🍥 🎯 Scratch.thy (modified)	
	💥 : 👍 : 🔞 : 🛛 🍝 🕨
Scratch.thy (~/)	↑
theory Scratch	
imports Main	
begin	
lemma "[x] = [y] \implies x = y" by (metis list.inject)	
Provers: cvc4 remote_vampire z3 spass e	ry methods 🌸 Apply Cancel Locate 100% 💌
"cvc4": Try this: by (metis list.inject) (14 ms).	
"z3": Try this: by (metis list.inject) (18 ms).	
"spass": Try this: by (metis list.inject) (18 ms).	
"e": Try this: by (metis the elem set) (14 ms).	
"remote vampire": Try this: by (metis list.inject) (16	ms).
Sledgehammer	
5,26 (60/83)	(isabelle,isabelle,UTF-8-Isabelle)NmroUG 188/3B1MB 12:14 AM

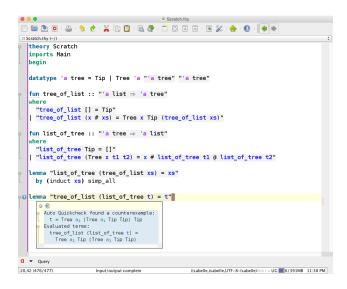
Example: semi-intelligible automated reasoning

sledgehammer [*isar_proofs*]

- proof redirection: classical contradiction of negated conclusion
 ~> proof of conclusion
- \bullet treatment of Skolemization vs. Isar **obtain** x where $B \ x$
- post-processing for legibility and efficiency of proof-checking
- \longrightarrow some high-level tracing of ATPs
- \longrightarrow truly intelligible proofs require manual rewriting

Automated disprovers — counter examples

- nitpick based on relational model finder
- quickcheck based on random functional evaluation



Eisbach: high-level proof procedures (D. Matichuk et al)

Proof method definitions:

- abstraction over terms and facts:
 method m for x y uses a b = method_body[m, x, y, a, b]
- abstraction over facts, with declaration in the context:
 method m declares simp = method_body[m]
- abstraction over other methods:
 method m methods m₁ m₂ = method_body[m, m₁, m₂]

Method *match*:

- goal introspection with pattern matching
- subgoal focus (similar to **subgoal** command)
- control of backtracking

Document preparation

Structure markup

- section headings: chapter, section, subsection, etc.
- text blocks: text
- implicit lists (cf. Markdown): itemize, enumerate, description
- free-form LATEX macros

Antiquotations

full form: @{name [options] arguments ...} short form:

- 1. cartouche argument: \<^*name>*(*argument*)
- 2. no argument: \<^*name*>

Example: »*this document*«

Isabelle tool implementation

Isabelle/ML

Characteristics:

- SML'97: strict functional programming + exceptions
- SML'90: interrupts
- Poly/ML (by David Matthews) as main implementation; SML/NJ now impractical
- parallel evaluation via futures (implemented via Poly/ML threads)
- immutable data managed within logical context

Notes:

- Isabelle/ML library useful for advanced functional programming
- Isabelle/jEdit serves as IDE for Isabelle/ML and Standard ML

Isabelle/ML IDE support

Isabelle/ML/PIDE:

- precise tokenization (syntax-highlighting etc.)
- spell-checking inside comments
- antiquotations
- text cartouches with formal position
- source-level debugger

Poly/ML IDE support

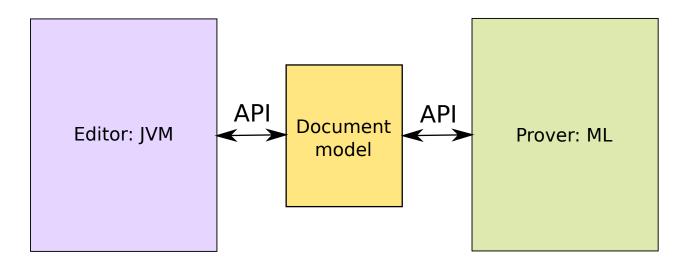
Poly/ML 5.5.2:

- inferred types for sub-expressions
- defining positions of referenced entities
- information about ML structures and open scopes
- pretty-printing of ML values with markup

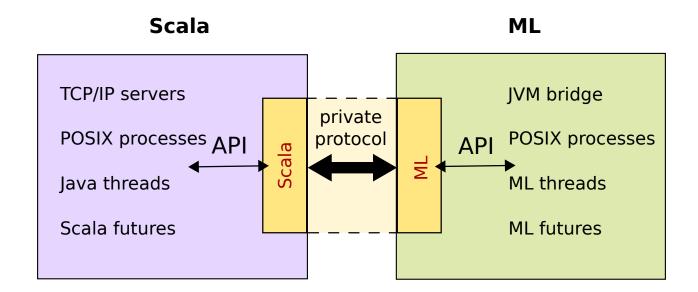
Poly/ML repository (November 2015):

- completion
- breakpoints for debugging

Isabelle/Scala/PIDE architecture: conceptual view



PIDE architecture: implementation view

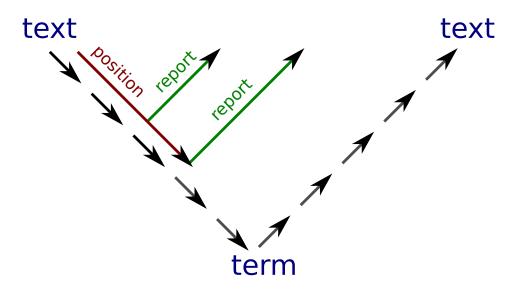


Design principles:

- private protocol for prover connectivity (asynchronous interaction, parallel evaluation)
- public Scala API (timeless, stateless, static typing)

Markup reports

Problem: round-trip through several sophisticated syntax layers **Solution:** execution trace with markup reports



Conclusion

What is Isabelle?

The more it advances, the less it is finished!