Intelligible semi-automated reasoning
in December 2015

Makarius Wenzel
http:/ /sketis.net

Abstract

Isabelle was introduced in 1989 (by L. Paulson) as a generic logical framework for higher-order
natural deduction. Intelligible semi-automated reasoning (lsar) was introduced in 1999 (by M.
Wenzel) as a structured proof language for human-readable formal proof documents. Today, in
December 2015, we see large applications of Isabelle/Isar in the Isabelle/HOL object-logic, e.g. in
the Archive of Formal Proofs (http://afp.sf.net) with more than 240 entries.

After so many years, development of Isar is still not finished. Recent refinements of old concepts
and additions of new concepts include: structured rule statements (Eigen-contexts), multi-branch
elimination (case-splitting), structured backwards refinement. The new Eisbach language (by D.
Matichuk et al) allows to define complex proof methods in their usual syntax, instead of traditional
Isabelle/ML. Sledgehammer (by J. Blanchette et al) allows to generate semi-intelligible Isar proofs
from machine-generated proofs (via external ATPs and SMTs).

The ultimate aim of Isabelle/Isar is to turn the results of formal proof production into mathematical
documents with nice type-setting. Document source was mainly written in LaTeX in the past, but
is now moving towards Markdown, with specific GUI support in the Prover IDE (Isabelle/jEdit).

Introduction

What is Isabelle?

Hanabusa Itcho: “Blind monks examining an elephant”

Introduction

History: LCF Prover Family

LCF (since 1979) =z
Edinburgh LCF
Cambridge LCF

HOL (since 1988) == &
ProofPower
HOL4
HOL-Light
HOL Zero

Coq (since 1985) 1
Coq 8.4pl6 (April 2015)

Isabelle (since 1986) == ™ (1 &
Isabelle2015 (May 2015)

Introduction

Isabelle: framework of
domain-specific formal languages

Logic:
Isabelle/Pure: Logical framework and bootstrap environment
Isabelle/HOL: Theories and tools for applications

Programming:
Isabelle/ML: Tool implementation (Poly/ML)
Isabelle/Scala: System integration (JVM)

Proof:

Isabelle/lIsar: Intelligible semi-automated reasoning
Document preparation: IATEX type-setting of proof text

Introduction

Structured Proofs

Natural Deduction: (Gentzen, 1935)

4]
A—sB A B
B A— B

Isabelle /Pure rules: (Paulson 1989)

(A— B) — A— B (A— B) — A — B

Isabelle/Isar proofs: (Wenzel 1999)

assume A — B have A — B
also have A (proof) proof
finally have B . assume A

then show B (proof)
ged

Introduction

Isar principles

Ultimate goal: human-readable formal proof documents
Notions of proof:

Primitive proof term (internal inferences)

Primary proof text (concrete syntax and structure)
Presentation proof document (pretty-printing and type-setting)

Isar language characteristics:

e interpreted language of proof expressions:
context elements, flow of facts towards goals

e built-in reduction to Pure rule composition
e add-on proof methods (defined in library)

—— bottom-up emergence from existing Isabelle concepts

Introduction

Example proof patterns: induction and calculation

theorem fixes n :: nat shows P n
proof (induct n)

case 0

show P 0 (proof)
next

case (Suc n)

then show P (Suc n) (proof)

ged

notepad

begin
have ¢ = b (proof)
also have ... = ¢ (proof)
also have ... = d (proof)

finally have ¢« = d .
end

Introduction

Example proof: induction x calculation

theorem

fixes n :: nat

shows (> i=0..n. i) =nx* (n + 1) div 2
proof (induct n)

case 0
have (> i=0..0. i) = (0::nat) by simp
also have ... =0 % (0 + 1) div 2 by simp
finally show ?case .

next

case (Suc n)
have (> i=0..Suc n. i) = (>_i=0..n. i) + (n + 1) by simp

alsohave ... =n x (n+ 1) div 2 4+ (n + 1) by (simp add: Suc.hyps)
alsohave ... =(n*x (n+ 1)+ 2 % (n 4+ 1)) div 2 by simp
also have ... = (Suc n * (Sucn + 1)) div 2 by simp
finally show ?case .
ged

Introduction

Isabelle/Pure: declarative rules

Theory and proof context

Logical judgement:

O,I'Fop

e background theory ©
(polymorphic types, constants, axioms; global data)

e proof context I' (fixed variables, assumptions; local data)

Operations on theories:

e merge and extend: O3 =0, UBOy + 74+ cuT 4+ c=t

e symbolic sub-theory relation: ©; C 6,

e transfer of results: if ©; C O3 and O, I' = ¢ then Oy, T' - ¢

Isabelle/Pure: declarative rules 11

Primitive inferences

Syntax (types and terms):

fun :: (type, type)type function space ‘a = 'b
all :: ('a = prop) = prop universal quantification Az::'a. B x
imp . prop = prop = prop implication A = B

Derivations (theorems): implicit theory ©

A€o

A (aziom) TE A (assume)
I'+Blz] z¢T , I' = Az. B[x] .
IF Az Bla] \iro) T F Bla /\elim)

I'NHFA—B I+ A
uls+-2~B

I'=B
' -AF A= B

(==-intro) (==-elim)

Isabelle/Pure: declarative rules 12

Object-logic rules

Main principles: (Paulson 1989)

e Pure syntax is notation for rules in Natural Deduction
Ay ... A,

logical entailment: A, =— ... A,, = B represents B
local parameter: Az. B z represents “eigen-variable” condition

e Declarative rule composition via:
— back-chaining
— lifting into subgoal context
— higher-order unification (G. Huet, D. Miller).

— lIsabelle/Pure reasoning similar to A-Prolog

Isabelle/Pure: declarative rules 13

Inferences for rule composition

A=—B B'=— C B6=B'0

10 — O o (compose)
_ A=B_ (=-lift)
(H—=—= A) — (H — B)

Aa=— Baua (/\—lzft)

(AZ. A (@az)) = (AZ. B (@ T))

rule: Aa= Ba
goal: (N\z. HT = B'z) = C
goal unifier: (A\T. B (@x))§ = B'0

— — (resolution)
(Az. Hz =—= A (ax))0 = C6
goal: (AT. HT => A %) = C
assm unifier: A0 = H;0 (for some H;) ,
(assumption)

Co

Isabelle/Pure: declarative rules

14

Isabelle/Isar: proof context

Notepad for logical entities

— background theory ©

notepad

begin

— proof context I

Terms:
let ?f = Az. z — term binding (abbreviation)
let _ + b= %fa+ b — pattern matching
let 79 = 2f 7f — Hindler-Milner polymorphism

Facts:
note rules = sym refl trans — collective facts
note a = rules(2) — selection
note b = this — implicit result this

end

Isabelle/lsar: proof context

16

Context elements: rules from text

Universal context: fix and assume

{ {

fix x assume A

have B = (proof) have B (proof)
¥ ¥
note (A\z. B 1) note (A — B)

Existential context: obtain

{

obtain a where B a (proof)
have C (proof)

}

note ((C)

Isabelle/lsar: proof context

17

Structured rule statements (within theory)

Long theorem statement:

e context elements: fixes a7 and a5 ... assumes A; and A, ...

e conclusion: shows B

e indirect conclusion: obtains a where B a
“may assume that B a holds for some abstract a”

theorem exists_intro:
fixes B :: ‘a = bool and a :: a
assumes B a
shows dz. Bz

theorem exists_elim:
fixes B :: ‘a = bool
assumes dx. Bz
obtains ¢ :: ‘a where B «

Isabelle/lsar: proof context

18

Structured rule statements (within proof)

Horn-clause post-fix notation: “Eigen-context”

e premises: have B if A; and A, ...
e parameters: have B for a; and a5 ...

Examples:

e conjunction introduction:
have A N B if A and B

e existential introduction:
have dxz. Bz if B a for a

e disjunction elimination:
from AV B)have Cif A=— C and B = (for C

e existential elimination:
from dxz. B x) have C if Az. Bz = C for C

Isabelle/lsar: proof context

19

Elimination statements (within proof)

consider * where A T | 7 where B7y |
have thesis
if A\T. A T = thesis
and \y. B y = thesis
for thesis

Examples:

e existential elimination:
from dz. B) consider z where B z

e conjunction elimination:
from (A A B) consider A and B

e disjunction elimination:
from (A vV B) consider A | B

Isabelle/Isar: proof context 20

Examples:

notepad
begin
assume A; V A, V A3V Ay
then consider A; | Ay | As | A4
by blast
next
assume A; A B; V A A Bo A Co
then consider A; and B; | A; and B; and (5
by blast
next
assume (dzy. Az ABy)V (Fz. Cz)
then consider a b where A ¢ and B b | z where C 2
by blast
end

Isabelle/lsar: proof context

21

Isabelle/lIsar: structured proofs

Proof decomposition

Structured proof outline:

from facts; have props using factss
proof (initial_method)
body

qed (terminal_method)

Solving sub-problems: within body

fix vars
assume props
show props (proof)

or.

show props if props for vars (proof)

Isabelle/lsar: structured proofs

23

Proof decomposition as Pure inference

have Az. Hz — B'7%
proof —

fix a

assume G @

show B @ (proof)
ged

subgoal: (ANz. HT = B'7) = C
subproof: Ga=— Ba for schematic a
concl unifier: (Ax. B (@ x))0 = B'0
assm unifiers: (Az. G; (ax))0 = H; 0 for each G; some H;
Co

Isabelle/lsar: structured proofs 24

Example

notepad
begin
fix A B :: bool
have ANB — B A A
proof (rule impl)
assume x: A A B
show B A A
proof (rule conjl)
show B proof (rule conjunct2 [OF x|) qed
show A proof (rule conjunctl [OF x]) qed
ged
ged
end

Isabelle/lsar: structured proofs

25

Terminal proofs

Canonical double-step proofs:

have prop
proof (initial_method)
qed (terminal_method)

or: have prop by (initial_method) (terminal_method)

Single-step proofs:
by fact
by this
by rule

Skipped proofs:

sorry

Isabelle/lsar: structured proofs

26

Using facts

Goal statement with facts:

from facts; have prop using factss
proof (initial_method)
body

qed (terminal_method)

e initial_method sees factsy factso as primary argument

e actual use of facts depends on proof method,
e.g. rule, cases, induct, auto

Abbreviations and synonyms:

then
note a then
note ¢ and this then

from this
from a
with «

Isabelle/lsar: structured proofs

27

Mixed forward-backward reasoning (1)

notepad
begin
assume 7: Ay — Ay — B — By =— B3 — (C

have A; and Ay (proof)

then have C

proof (rule 1)
show B (proof)
show By (proof)
show B3 (proof)

ged

end

Isabelle/lsar: structured proofs

28

Mixed forward-backward reasoning (2)

notepad
begin
assume r: A — (A\z. Hy 2 =— B1 1) — (Ay. Hoy = By y) — C

have A (proof)
then have C
proof (rule 1)
show B; z if Hy = for © (proof)
show B, y if Hy y for y (proof)
ged
end

Isabelle/lsar: structured proofs 29

Calculational reasoning

alsog = note calculation = this
alsop,11 = note calculation = trans [OF calculation this]
finally = also from calculation
moreover = note calculation = calculation this
ultimately = moreover from calculation
Example:
notepad notepad
begin begin
have « = b (proof) have A (proof)
also have ... = ¢ (proof) moreover have B (proof)
also have ... = d (proof) moreover have C (proof)
finally have a = d . ultimately have 4 and B and C' .
end end
Note:
term “..." abbreviates the argument of the last statement

Isabelle/lsar: structured proofs 30

Induction

using facts
proof (induct insts arbitrary: vars rule: fact)

Example:

notepad
begin
fix n :: nat and z :: ‘a have P n x
proof (induct n arbitrary: x)
case 0
show P 0 = (proof)
next
case (Suc n)
from (P n a) show P (Suc n) x (proof)
ged
end

Isabelle/lsar: structured proofs

31

Generalized elimination

obtain T where B T (proof) =
have reduction: /\thesis. (\T. B T = thesis) = thesis (proof)

fix T assume <eliminate reduction> B T

' - Athesis. (ANT. B T = thesis) = thesis
ruBzhkC

ANy (eliminate)
Example:
notepad notepad
begin begin
assume dz. Bz assume A A B
then obtain z where B z .. then obtain A and B ..

end end

Isabelle/lsar: structured proofs 32

Structured backwards refinement

{goal)
subgoal premises prems for x1 x5 . ..

(proof)

Example: structured proof scripts

{goal)
subgoal by method;

subgoal by methods
done

(goal)
subgoal premises prems for x y

using prems (proof1)

subgoal premises prems for u v w
using prems (proofs)

done

Isabelle/lsar: structured proofs

33

Isabelle/HOL: theory specifications

Types

e augmented version of Simple Theory of Types (Church 1940)
e schematic polymorphism (weaker than ML let-polymorphism)
e basic types: bool, nat, ‘a = 'b (full function space)

Type specifications:

e typedef semantic subtype of existing type

e quotient_type wrt. equivalence relation or PER

e record extensible records (glorified tuples)

e datatype and codatatype (Bounded Natural Functors)

datatype ‘a list = Nil | Cons (hd: 'a) (tl: 'a list)
codatatype ‘a stream = Stream (HD: 'a) (TL: 'a stream)

Isabelle/HOL: theory specifications

35

Functions and constants

e abbreviation: abstract syntax definitions

abbreviation (input) double :: nat = nat
where double n = 2 x n

e definition: simple non-recursive definitions

definition square :: nat = nat
where square n = n x n

e fun and function / termination: general recursion with
implicit or explicit termination proof

fun fibonacci :: nat = nat
where
fibonacci 0 = 0
| fibonacci (Suc 0) = 1
| fibonacci (Suc (Suc n)) = fibonacci n + fibonacci (Suc n)

Isabelle/HOL: theory specifications 36

Inductive predicates and sets

e inductive and coinductive: Knaster-Tarski fixed-points over pred-
icates or sets

inductive_set star (_x [100] 100) for R :: (‘a X ‘a) set
where

base: (z, x) € Rx
| step: (z, y) € R = (v, 2) € Rx = (z, z) € R%

This means Rx is the least relation (set of pairs) that is closed under the
introduction rules above. The following induction rule is provided:

(z1, z2) € Rx =
(Az. Pxz) =

(Atyz (z,y) €E R— (y,2) E R« = Pyz=— Pzz) = Pux1 22

Isabelle/HOL: theory specifications 37

Type classes

Predicate over constant signature with single type-variable
Integrated into type-system: order-sorted algebra of constraints
Class intersections are called sorts

Class inclusion hierarchy: by definition or proof

Class instantiation by concrete types

class zero = fixes zero :: ‘a (0)
class one = fixes one :: 'a (1)
class times = fixes times :: 'a = 'a = 'a (infixl * 70)

class group = times + one + inverse +
assumes group_assoc: (x * y) * z = x % (y * 2)
and group_left_one: 1 * x = «x
and group_left_inverse: inverse r * x = 1

Isabelle/HOL: theory specifications

38

Example: class hierarchy

class_deps type monoid_add

-

<
Selection: »

Apply

Nodes
type
plus
semigroup_add
zero
monoid_add

Graphview

[Show content Show arrow heads. Show dummies | Saveimage | [150% ~

Fit to window

Update layout

type

class plus = type + class zero = type +
fixesplus ::"a='a="a" fixes zero :: "a"

\

class semigroup_add = plus +
assumes
"add_assoc":
"nabc.a+b+c=a+(b+c)"

class monoid_add =
semigroup_add + zero +
assumes
"add_O_left" "Ara.0 +a=a"
and "add_0_right":"Ara.a+0=a"

Isabelle/HOL: theory specifications

39

Isabelle/HOL proof methods

e rule: generic Natural Deduction (with HO unification)

e cases: elimination, syntactic representation of datatypes,
inversion of inductive sets and predicates

e induct and coinduct: induction and coinduction of types, sets,
predicates

e simp: equational reasoning by the Simplifier (HO rewriting),
with possibilities for add-on tools

e fast and blast: classical reasoning (tableau)

e auto and force: combined simplification and classical reasoning

e arith, presburger: specific theories

e smt: /3 with proof reconstruction

Isabelle/HOL: theory specifications 40

Additional tool support

Isabelle/jEdit Prover IDE (2015)

e asynchronous
Interaction

® continuous
checking

e parallel
processing

Additional tool support

& Seq.thy

e0e®
I@dE & 9 XEH @ T REEEX

@ |[e]»

| O Seq.thy (SISABELLE_HOME/src/HOL/ex/)

a
=

section <Finite sequences>

e [theory Seq
1 imports Main
begin

datatype 'a seq = Empty | Seq 'a "'a seq"

& |fun conc "'aseq = 'aseq = 'a seq"l
where
"conc Empty ys = ys"
.~ || “conc (E:g X Xs) ys =
3 B
constant "Seg.seq.Seg"
11 'a= 'aseq = 'aseq

Seq x (conc xs ys)"

o |[fun revers
where

"reverse =y =y
"reverse (Seq x xs) =

conc (reverse xs) (Seq x Empty)"

T lemma conc_empty: "“conc xs Empty = xs"
by (induct xs) simp_all

[Auto update | Update | Search: v

constants
conc "'a seq =
Found termination order:

'a seq = 'a seq"
"(Ap. size (fst p)) <*mlex*> {}"

B« | Qutput | Query Sledgehammer Symbels

100%

EREY

| isabelle

Filter:

& -

Seq.thy

W section «Finite sequences:

theory Seq

fun reverse ::
lemma conc_empty: “conc xs Empty = xs"

Lemna conc_assoc: “"cone (conc 1s ys) zs = con)
Lemma reverse_conc: “reverse [conc xs ys) = ¢

Lemma reverse_reverse: “reverse (reverse xs)

datatype 'a seq = Empty | Seq 'a "'a seq"

sauoayl }IPRPIS UOHRIUBWRIOG

4

13,39 (200/789)

(isabelle,isabelle,UTF-8-Isabelle)

UG [55/410MB 11:45 PM

42

Sledgehammer (J. Blanchette et al)

e heavy external ATPs / SMTs for proof search
e light internal ATP (Metis) for proof reconstruction

® [] Scratch.thy (modified)

D&@3E & 9¢ XEB @ CO3ID EX & @ [«»
| B Scratch.thy (~/}

theory Scratch

imports Main

begin

lemma "[x] = [y] — x = y"lby (metis list.inject)

Provers: cvcd remote_vampire z3 spass e ¥ | [l Isarproofs [_| Try methods | Apply | | Cancel | | Locate | |100% v

"cvc4": Try this: by (metis list.inject) (14 ms).

"z3": Try this: by (metis list.inject) (18 ms).

"spass": Try this: by (metis list.inject) (18 ms).

"e": Try this: by (metis the_elem_set) (14 ms).
"remote_vampire": Try this: by (metis list.inject) (16 ms).

B« | Sledgehammer |

5,26 (60/83) (isabelle,isabelle,UTF-8-Isabelle) UG IEEER IMB 12:14 AM

Additional tool support 43

Example: semi-intelligible automated reasoning

sledgehammer [isar_proofs]

e proof redirection: classical contradiction of negated conclusion

~+ proof of conclusion
e treatment of Skolemization vs. Isar obtain z where B z

e post-processing for legibility and efficiency of proof-checking

— some high-level tracing of ATPs
— truly intelligible proofs require manual rewriting

Additional tool support

44

Automated disprovers — counter examples

e nitpick based on relational model finder
e quickcheck based on random functional evaluation

Additional tool support

eoe & Scratch.thy

O8dE: &9 e:-XDE R DEFD

71}

Scratch.thy (~/)
'theory Scratch
imports Main

begin
datatype 'a tree = Tip | Tree 'a "'a tree" "'a tree"
fun tree_of_list :: "'a list = 'a tree"
where

“tree_of_list [] = Tip"
| "tree_of_list (x # xs) = Tree x Tip (tree_of_list xs)"
fun list_of_tree :: "'a tree = 'a list"
where

"list_of_tree Tip = []"
| "list_of_tree (Tree x tl t2) = x # list_of_tree t1 @ list_of_tree t2"

lemma "list_of_tree (tree_of_list xs) = xs"
by (induct xs) simp_all

O[lemma “"tree_of_list (list_of_tree t) = t"J
5 B
> Auto Quickcheck found a counterexample:
t = Tree a (Tree a; Tip Tip) Tip
Evaluated terms:
tree_of list (list_of tree t) =
Tree a; Tip (Tree a; Tip Tip)

8 v Query

20,42 (476/477) Input/output complete

(isabelle, sabelle,UTF-8-lsabelle) UG BE6/391MB

11:38°M

45

Eisbach: high-level proof procedures
(D. Matichuk et al)

Proof method definitions:
e abstraction over terms and facts:
method m for x y uses a b = method_body|m, z, y, a, b]

e abstraction over facts, with declaration in the context:
method m declares simp = method_body|m]

e abstraction over other methods:
method m methods m; mo = method_body|m, m1, mo]

Method match:

e goal introspection with pattern matching
e subgoal focus (similar to subgoal command)
e control of backtracking

Additional tool support 46

Document preparation

Structure markup

e section headings: chapter, section, subsection, etc.

e text blocks: text

e implicit lists (cf. Markdown): itemize, enumerate, description
o free-form ETEX macros

Antiquotations

full form: e{name |options| arguments ...}
short form:

1. cartouche argument: \<“name>(arqument)
2. no argument: \<"name>

Example: >this document<

Additional tool support 47

Isabelle tool implementation

Isabelle /ML

Characteristics:
e SML'97: strict functional programming + exceptions
e SML’90: interrupts

e Poly/ML (by David Matthews) as main implementation;
SML/NJ now impractical

e parallel evaluation via futures (implemented via Poly /ML threads)

e immutable data managed within logical context

Notes:

e |sabelle/ML library useful for advanced functional programming
e Isabelle/jEdit serves as IDE for Isabelle/ML and Standard ML

Isabelle tool implementation

49

Isabelle/ML IDE support

Isabelle/ML/PIDE:

e precise tokenization (syntax-highlighting etc.)
e spell-checking inside comments

e antiquotations

e text cartouches with formal position

e source-level debugger

Isabelle tool implementation

50

Poly/ML IDE support

Poly/ML 5.5.2:

e inferred types for sub-expressions

e defining positions of referenced entities

e information about ML structures and open scopes
e pretty-printing of ML values with markup

Poly /ML repository (November 2015):

e completion
e breakpoints for debugging

Isabelle tool implementation

51

Isabelle/Scala/PIDE architecture: conceptual view

Editor: JVM

API

Document
model

API

Isabelle tool implementation

Prover: ML

52

PIDE architecture: implementation view

Scala

ML

TCP/IP servers

Java threads

Scala futures

POSIX processes API

«—F

Scala

JVM bridge

private
protocol

S

ML

API POSIX processes

+—
ML threads

ML futures

Design principles:

e private protocol for prover connectivity
(asynchronous interaction, parallel evaluation)

e public Scala API

(timeless, stateless, static typing)

Isabelle tool implementation

53

Markup reports

Problem: round-trip through several sophisticated syntax layers
Solution: execution trace with markup reports

text

Isabelle tool implementation

54

Conclusion

Conclusion

What is Isabelle?

The more it advances, . . .

.. . the less it is finished!

56

