
Appendix A

Isabelle/Isar quick reference

A.1 Proof commands

A.1.1 Primitives and basic syntax

fix x augment context by
∧

x . ✷

assume a: ϕ augment context by ϕ =⇒ ✷

then indicate forward chaining of facts
have a: ϕ prove local result
show a: ϕ prove local result, refining some goal
using a indicate use of additional facts
unfolding a unfold definitional equations
proof m1 . . . qed m2 indicate proof structure and refinements
{ . . . } indicate explicit blocks
next switch blocks
note a = b reconsider facts
let p = t abbreviate terms by higher-order matching
write c (mx ) declare local mixfix syntax

proof = prfx ∗ proof method ? stmt∗ qed method ?

| prfx ∗ done
prfx = apply method

| using facts

| unfolding facts

stmt = { stmt∗ }
| next
| note name = facts

| let term = term

| write name (mixfix )
| fix var+

| assume name: props

| then? goal

goal = have name: props proof

| show name: props proof

294



APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 295

A.1.2 Abbreviations and synonyms

by m1 m2 ≡ proof m1 qed m2

.. ≡ by rule

. ≡ by this

hence ≡ then have
thus ≡ then show

from a ≡ note a then
with a ≡ from a and this

from this ≡ then
from this have ≡ hence
from this show ≡ thus

A.1.3 Derived elements

also0 ≈ note calculation = this

alson+1 ≈ note calculation = trans [OF calculation this]
finally ≈ also from calculation

moreover ≈ note calculation = calculation this

ultimately ≈ moreover from calculation

presume a: ϕ ≈ assume a: ϕ
def a: x ≡ t ≈ fix x assume a: x ≡ t

obtain x where a: ϕ ≈ . . . fix x assume a: ϕ
case c ≈ fix x assume c: ϕ
sorry ≈ by cheating

A.1.4 Diagnostic commands

print_state print proof state
print_statement print fact in long statement form
thm a print fact
prop ϕ print proposition
term t print term
typ τ print type



APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 296

A.2 Proof methods

Single steps (forward-chaining facts)

assumption apply some assumption
this apply current facts
rule a apply some rule
rule apply standard rule (default for proof)
contradiction apply ¬ elimination rule (any order)
cases t case analysis (provides cases)
induct x proof by induction (provides cases)

Repeated steps (inserting facts)

− no rules
intro a introduction rules
intro_classes class introduction rules
elim a elimination rules
unfold a definitional rewrite rules

Automated proof tools (inserting facts)

iprover intuitionistic proof search
blast , fast Classical Reasoner
simp, simp_all Simplifier (+ Splitter)
auto, force Simplifier + Classical Reasoner
arith Arithmetic procedures



APPENDIX A. ISABELLE/ISAR QUICK REFERENCE 297

A.3 Attributes

Rules

OF a rule resolved with facts (skipping “_”)
of t rule instantiated with terms (skipping “_”)
where x = t rule instantiated with terms, by variable name
symmetric resolution with symmetry rule
THEN b resolution with another rule
rule_format result put into standard rule format
elim_format destruct rule turned into elimination rule format

Declarations

simp Simplifier rule
intro, elim, dest Pure or Classical Reasoner rule
iff Simplifier + Classical Reasoner rule
split case split rule
trans transitivity rule
sym symmetry rule

A.4 Rule declarations and methods

rule iprover blast simp auto

fast simp_all force

Pure.elim! Pure.intro! × ×
Pure.elim Pure.intro × ×
elim! intro! × × ×
elim intro × × ×
iff × × × ×
iff ? ×
elim? intro? ×
simp × ×
cong × ×
split × ×


